Suppr超能文献

在铜衬底上生长的硅/碳纳米球作为锂离子电池的集成电极。

Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

机构信息

State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Nanoscale. 2014 Jan 7;6(1):371-7. doi: 10.1039/c3nr04323a. Epub 2013 Nov 7.

Abstract

We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

摘要

我们报告了在 Cu 基底上生长的硅/碳(Si/C)纳米球作为锂离子电池的集成阳极。Si/C 纳米球是通过在 Cu 基底上使用甲基三氯硅烷作为前驱体的催化化学气相沉积(CCVD)合成的,甲基三氯硅烷是有机硅烷工业的一种廉价副产品。使用 X 射线衍射、透射电子显微镜、扫描电子显微镜、热重分析、拉曼光谱、氮气吸附、电感耦合等离子体发射光谱和 X 射线光电子能谱对样品进行了表征。发现直径为 400-500nm 的链接 Si/C 纳米球包含 Si、Cu(x)Si 和 Cu 纳米晶体,它们高度分散在非晶态碳纳米球中。提出了一种 CCVD 机制,其中蒸发的 Cu 原子在催化生长的 Si 纳米晶嵌入链接 Si/C 纳米球中起着关键作用。电化学测量表明,这些 Si/C 纳米球在 50、200、800 和 50mA g(-1) 下分别具有 998.9、713.1、320.6 和 817.8mA h g(-1)的容量,经过 50 次循环后,明显高于商用石墨阳极。这是因为 Si/C 纳米球中的非晶态碳、Cu(x)Si 和 Cu 可以在 Li 插入和提取反应期间缓冲 Si 纳米晶的体积变化,从而阻止电极的开裂或崩解。此外,导电 Cu(x)Si 和 Cu 纳米晶的掺入以及活性电极材料与 Cu 基底的集成可以提高从集电器到单个 Si 活性颗粒的导电性,从而显著提高可逆容量和循环稳定性。这项工作将有助于制造低成本无粘结剂的 Si/C 锂离子电池阳极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验