Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030.
J Cell Biol. 2013 Nov 11;203(3):437-43. doi: 10.1083/jcb.201308116.
The precise and remarkable subdivision of myelinated axons into molecularly and functionally distinct membrane domains depends on axoglial junctions that function as barriers. However, the molecular basis of these barriers remains poorly understood. Here, we report that genetic ablation and loss of axonal βII spectrin eradicated the paranodal barrier that normally separates juxtaparanodal K(+) channel protein complexes located beneath the myelin sheath from Na(+) channels located at nodes of Ranvier. Surprisingly, the K(+) channels and their associated proteins redistributed into paranodes where they colocalized with intact Caspr-labeled axoglial junctions. Furthermore, electron microscopic analysis of the junctions showed intact paranodal septate-like junctions. Thus, the paranodal spectrin-based submembranous cytoskeleton comprises the paranodal barriers required for myelinated axon domain organization.
髓鞘化轴突精确而显著的分子和功能上的细分取决于作为屏障的轴突胶质连接。然而,这些屏障的分子基础仍知之甚少。在这里,我们报告说,遗传消融和轴突βII spectrin 的丧失根除了通常将位于髓鞘下方的近旁节段 K(+)通道蛋白复合物与位于Ranvier 结处的 Na(+)通道分隔开的连接蛋白。令人惊讶的是,K(+)通道及其相关蛋白重新分布到连接蛋白中,在那里它们与完整的 Caspr 标记的轴突胶质连接共定位。此外,对连接的电子显微镜分析显示,连接蛋白保持了完整的连接蛋白样分隔连接。因此,连接蛋白基于 spectrin 的亚膜细胞骨架构成了髓鞘轴突域组织所必需的连接蛋白。