Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19466-71. doi: 10.1073/pnas.1319598110. Epub 2013 Nov 11.
Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.
多倍体或全基因组加倍在植物进化中反复出现,但只有一小部分全基因组加倍导致了成功的物种形成。新形成的多倍体中一个主要的挑战是持续的核型不稳定,这会影响适应性。普通小麦的三个假定的二倍体祖先,具有 AA、SS(S∼B)和 DD 基因组,它们是同域发生的,它们以不同的组合杂交可能产生了具有各种基因组组成的可育异源四倍体。然而,只有 SSAA 或密切相关的基因组组合导致了四倍体小麦如普通小麦和提莫菲维小麦的物种形成。我们通过结合荧光原位杂交和基于基因组的核型分析,分析了四个新合成的异源四倍体小麦的早期世代,它们的基因组组成分别为 S(sh)S(sh)A(m)A(m)、S(l)S(l)AA、S(b)S(b)DD 和 AADD。核型分析结果表明,尽管 S(sh)S(sh)A(m)A(m)和 S(l)S(l)AA 的核型稳定是即时和持久的,但大量的非整倍体和广泛的染色体重排与 S(b)S(b)DD 和 AADD 相关,其中亲本亚基因组显示出明显不同的染色体获得/丢失和重排倾向。尽管补偿性非整倍体和同源物之间的相互易位占主导地位,但由于染色体不稳定,生殖适应性还是受到了很大的影响。值得注意的是,在染色体稳定的系 S(sh)S(sh)A(m)A(m)和 S(l)S(l)AA 中,重复 DNA 的局部基因组变化和基因同源物的拷贝数变化都发生了。我们的数据表明,与天然四倍体小麦类似的基因组组合的新形成的异源四倍体小麦具有即时和持久的核型稳定性,这一特性与快速的基因拷贝数变化一起,可能为四倍体小麦的建立奠定了基础。