Suppr超能文献

结合二糖的2型志贺毒素晶体结构指导了一种异双功能毒素抑制剂的设计。

The crystal structure of shiga toxin type 2 with bound disaccharide guides the design of a heterobifunctional toxin inhibitor.

作者信息

Jacobson Jared M, Yin Jiang, Kitov Pavel I, Mulvey George, Griener Tom P, James Michael N G, Armstrong Glen, Bundle David R

机构信息

From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.

出版信息

J Biol Chem. 2014 Jan 10;289(2):885-94. doi: 10.1074/jbc.M113.518886. Epub 2013 Nov 13.

Abstract

Shiga toxin type 2 (Stx2a) is clinically most closely associated with enterohemorrhagic E. coli O157:H7-mediated hemorrhagic colitis that sometimes progresses to hemolytic-uremic syndrome. The ability to express the toxin has been acquired by other Escherichia coli strains, and outbreaks of food poisoning have caused significant mortality rates as, for example, in the 2011 outbreak in northern Germany. Stx2a, an AB5 toxin, gains entry into human cells via the glycosphingolipid receptor Gb3. We have determined the first crystal structure of a disaccharide analog of Gb3 bound to the B5 pentamer of Stx2a holotoxin. In this Gb3 analog,-GalNAc replaces the terminal-Gal residue. This co-crystal structure confirms previous inferences that two of the primary binding sites identified in theB5 pentamer of Stx1 are also functional in Stx2a. This knowledge provides a rationale for the synthesis and evaluation of heterobifunctional antagonists for E. coli toxins that target Stx2a. Incorporation of GalNAc Gb3 trisaccharide in a heterobifunctional ligand with an attached pyruvate acetal, a ligand for human amyloid P component, and conjugation to poly[acrylamide-co-(3-azidopropylmethacrylamide)] produced a polymer that neutralized Stx2a in a mouse model of Shigatoxemia.

摘要

2型志贺毒素(Stx2a)在临床上与肠出血性大肠杆菌O157:H7介导的出血性结肠炎关系最为密切,这种疾病有时会发展为溶血尿毒综合征。其他大肠杆菌菌株也获得了表达这种毒素的能力,食物中毒的爆发导致了显著的死亡率,例如2011年德国北部的疫情。Stx2a是一种AB5毒素,通过糖鞘脂受体Gb3进入人体细胞。我们确定了与Stx2a全毒素的B5五聚体结合的Gb3二糖类似物(-GalNAc取代了末端-Gal残基)的首个晶体结构。这种共晶体结构证实了之前的推断,即Stx1的B5五聚体中确定的两个主要结合位点在Stx2a中也起作用。这一认识为合成和评估针对Stx2a的大肠杆菌毒素异双功能拮抗剂提供了理论依据。将GalNAc Gb3三糖掺入带有丙酮酸缩醛(一种人淀粉样蛋白P成分的配体)的异双功能配体中,并与聚[丙烯酰胺-共-(3-叠氮基丙基甲基丙烯酰胺)]偶联,产生了一种在志贺毒素血症小鼠模型中中和Stx2a的聚合物。

相似文献

1
The crystal structure of shiga toxin type 2 with bound disaccharide guides the design of a heterobifunctional toxin inhibitor.
J Biol Chem. 2014 Jan 10;289(2):885-94. doi: 10.1074/jbc.M113.518886. Epub 2013 Nov 13.
2
The synthesis of a multivalent heterobifunctional ligand for specific interaction with Shiga toxin 2 produced by E. coli O157:H7.
Carbohydr Res. 2013 Aug 30;378:4-14. doi: 10.1016/j.carres.2013.05.010. Epub 2013 May 28.
3
Human Gb3/CD77 synthase produces P1 glycotope-capped N-glycans, which mediate Shiga toxin 1 but not Shiga toxin 2 cell entry.
J Biol Chem. 2021 Jan-Jun;296:100299. doi: 10.1016/j.jbc.2021.100299. Epub 2021 Jan 15.
4
Structural basis for the interaction of Shiga toxin 2a with a C-terminal peptide of ribosomal P stalk proteins.
J Biol Chem. 2020 Nov 13;295(46):15588-15596. doi: 10.1074/jbc.AC120.015070. Epub 2020 Sep 2.
5
Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7.
J Biol Chem. 2004 Jun 25;279(26):27511-7. doi: 10.1074/jbc.M401939200. Epub 2004 Apr 9.
6
AB5 Preassembly Is Not Required for Shiga Toxin Activity.
J Bacteriol. 2016 May 13;198(11):1621-1630. doi: 10.1128/JB.00918-15. Print 2016 Jun 1.
7
Glycolipid binding preferences of Shiga toxin variants.
PLoS One. 2014 Jul 1;9(7):e101173. doi: 10.1371/journal.pone.0101173. eCollection 2014.
8
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains.
Int J Food Microbiol. 2021 Feb 2;339:109029. doi: 10.1016/j.ijfoodmicro.2020.109029. Epub 2020 Dec 23.
10
Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands.
Nature. 2000 Feb 10;403(6770):669-72. doi: 10.1038/35001095.

引用本文的文献

1
Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing .
Front Cell Infect Microbiol. 2021 Jun 29;11:614963. doi: 10.3389/fcimb.2021.614963. eCollection 2021.
3
Verotoxin Receptor-Based Pathology and Therapies.
Front Cell Infect Microbiol. 2020 Mar 31;10:123. doi: 10.3389/fcimb.2020.00123. eCollection 2020.
4
Tissue Responses to Shiga Toxin in Human Intestinal Organoids.
Cell Mol Gastroenterol Hepatol. 2020;10(1):171-190. doi: 10.1016/j.jcmgh.2020.02.006. Epub 2020 Mar 5.
5
Structural and Functional Characterization of Stx2k, a New Subtype of Shiga Toxin 2.
Microorganisms. 2019 Dec 18;8(1):4. doi: 10.3390/microorganisms8010004.
7
AB5 Preassembly Is Not Required for Shiga Toxin Activity.
J Bacteriol. 2016 May 13;198(11):1621-1630. doi: 10.1128/JB.00918-15. Print 2016 Jun 1.
9
Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2?
Toxins (Basel). 2015 Apr 29;7(5):1467-85. doi: 10.3390/toxins7051467.
10
Glycolipid binding preferences of Shiga toxin variants.
PLoS One. 2014 Jul 1;9(7):e101173. doi: 10.1371/journal.pone.0101173. eCollection 2014.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
2
Discovery of inhibitors of Shiga toxin type 2 by on-plate generation and screening of a focused compound library.
Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1510-5. doi: 10.1002/anie.201309436. Epub 2014 Jan 22.
3
The synthesis of a multivalent heterobifunctional ligand for specific interaction with Shiga toxin 2 produced by E. coli O157:H7.
Carbohydr Res. 2013 Aug 30;378:4-14. doi: 10.1016/j.carres.2013.05.010. Epub 2013 May 28.
4
Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology.
Appl Environ Microbiol. 2012 Jun;78(12):4065-73. doi: 10.1128/AEM.00217-12. Epub 2012 Apr 13.
5
Lipopolysaccharide renders transgenic mice expressing human serum amyloid P component sensitive to Shiga toxin 2.
PLoS One. 2011;6(6):e21457. doi: 10.1371/journal.pone.0021457. Epub 2011 Jun 24.
6
Solid dispersion formulations of megestrol acetate with copovidone for enhanced dissolution and oral bioavailability.
Arch Pharm Res. 2011 Jan;34(1):127-35. doi: 10.1007/s12272-011-0115-2. Epub 2011 Apr 6.
7
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
10
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验