Suppr超能文献

容积量化的水流显示出鱼类利用水动力隐身来捕捉逃避的猎物。

Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey.

机构信息

Aerospace Engineering and Mechanics, University of Minnesota, , Minneapolis, MN 55455, USA.

出版信息

J R Soc Interface. 2013 Nov 13;11(90):20130880. doi: 10.1098/rsif.2013.0880. Print 2014 Jan 6.

Abstract

In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.

摘要

在水生生态系统中,鱼类捕食浮游动物为能量向更高营养级转移提供了主要途径。桡足类是一种丰富的浮游动物群体,它们能感知到接近捕食者时产生的水动力干扰,并通过快速逃离来做出反应。尽管具有这种能力,鱼类仍能成功捕食桡足类。先前的研究主要集中在捕食性攻击上,以阐明这种相互作用的细节。然而,这些掠夺性的攻击和随之产生的吸力只有在短距离内才有效。因此,小鱼必须在不引发逃避反应的情况下,近距离接近高度敏感的猎物,才能成功发起攻击。我们使用一种新的方法,高速、红外、层析粒子图像测速法,来研究捕食者和猎物在接近过程中周围的三维流体模式。我们的结果表明,至少有一种食浮游动物的鱼类(斑马鱼)可以在接近和捕食猎物(桡足类)时控制头部前方的弓形波。这改变了桡足类位置的水动力分布,使其低于引发逃避反应所需的阈值。我们发现这种行为是通过在口咽腔内部产生吸力来介导的,进入口腔的速度大致与鱼的前进速度相匹配。这些结果提供了关于动物如何调节身体周围流体运动的方面的深入了解,以克服逃避反应并提高猎物捕获能力。

相似文献

1
Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey.
J R Soc Interface. 2013 Nov 13;11(90):20130880. doi: 10.1098/rsif.2013.0880. Print 2014 Jan 6.
2
Sensory-Motor Systems of Copepods involved in their Escape from Suction Feeding.
Integr Comp Biol. 2015 Jul;55(1):121-33. doi: 10.1093/icb/icv051. Epub 2015 May 25.
4
Larval fish counteract ram and suction to capture evasive prey.
R Soc Open Sci. 2022 Nov 2;9(11):220714. doi: 10.1098/rsos.220714. eCollection 2022 Nov.
5
Prey fish escape by sensing the bow wave of a predator.
J Exp Biol. 2014 Dec 15;217(Pt 24):4328-36. doi: 10.1242/jeb.111773.
6
Sensing the strike of a predator fish depends on the specific gravity of a prey fish.
J Exp Biol. 2010 Nov 15;213(Pt 22):3769-77. doi: 10.1242/jeb.046946.
8
Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.
Integr Comp Biol. 2013 Nov;53(5):810-20. doi: 10.1093/icb/ict092. Epub 2013 Aug 12.
9
Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator.
J R Soc Interface. 2019 Feb 28;16(151):20180776. doi: 10.1098/rsif.2018.0776.

引用本文的文献

1
Ups and downs: copepods reverse the near-body flow to cruise in the water column.
Mar Biol. 2024;171(11):207. doi: 10.1007/s00227-024-04531-1. Epub 2024 Oct 10.
2
A power amplification dyad in seahorses.
Proc Biol Sci. 2023 Apr 12;290(1996):20230520. doi: 10.1098/rspb.2023.0520.
3
Larval fish counteract ram and suction to capture evasive prey.
R Soc Open Sci. 2022 Nov 2;9(11):220714. doi: 10.1098/rsos.220714. eCollection 2022 Nov.
5
Phytase-FeO nanoparticles-loaded microcosms of silica for catalytic remediation of phytate-phosphorous from eutrophic water bodies.
Environ Sci Pollut Res Int. 2019 May;26(15):14988-15000. doi: 10.1007/s11356-019-04794-y. Epub 2019 Mar 27.
6
Physical modeling of vortical cross-step flow in the American paddlefish, Polyodon spathula.
PLoS One. 2018 Mar 21;13(3):e0193874. doi: 10.1371/journal.pone.0193874. eCollection 2018.
7
Zooplankton can actively adjust their motility to turbulent flow.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11199-E11207. doi: 10.1073/pnas.1708888114. Epub 2017 Dec 11.
9
Turbulence triggers vigorous swimming but hinders motion strategy in planktonic copepods.
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0158.
10
Predator-induced flow disturbances alert prey, from the onset of an attack.
Proc Biol Sci. 2014 Sep 7;281(1790). doi: 10.1098/rspb.2014.1083.

本文引用的文献

1
Prey detection in a cruising copepod.
Biol Lett. 2012 Jun 23;8(3):438-41. doi: 10.1098/rsbl.2011.1073. Epub 2011 Dec 7.
2
Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.
Proc Biol Sci. 2011 Dec 22;278(1725):3670-8. doi: 10.1098/rspb.2011.0489. Epub 2011 May 4.
3
Volumetric imaging of fish locomotion.
Biol Lett. 2011 Oct 23;7(5):695-8. doi: 10.1098/rsbl.2011.0282. Epub 2011 Apr 20.
4
Aquatic suction feeding dynamics: insights from computational modelling.
J R Soc Interface. 2009 Feb 6;6(31):149-58. doi: 10.1098/rsif.2008.0311.
6
Relative importance of growth and behaviour to elasmobranch suction-feeding performance over early ontogeny.
J R Soc Interface. 2008 Jun 6;5(23):641-52. doi: 10.1098/rsif.2007.1189.
8
The forces exerted by aquatic suction feeders on their prey.
J R Soc Interface. 2007 Jun 22;4(14):553-60. doi: 10.1098/rsif.2006.0197.
9
Setae of the First Antennae of the Copepod Cyclops scutifer (Sars): Their Structure and Importance.
Proc Natl Acad Sci U S A. 1973 Sep;70(9):2656-9. doi: 10.1073/pnas.70.9.2656.
10
Quantification of flow during suction feeding in bluegill sunfish.
Zoology (Jena). 2003;106(2):159-68. doi: 10.1078/0944-2006-00110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验