Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 839, Institut du Fer à Moulin, 75005 Paris, France, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan, Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom, and Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.
J Neurosci. 2013 Nov 13;33(46):18149-60. doi: 10.1523/JNEUROSCI.0593-13.2013.
In the developing brain, cortical GABAergic interneurons migrate long distances from the medial ganglionic eminence (MGE) in which they are generated, to the cortex in which they settle. MGE cells express the cell adhesion molecule N-cadherin, a homophilic cell-cell adhesion molecule that regulates numerous steps of brain development, from neuroepithelium morphogenesis to synapse formation. N-cadherin is also expressed in embryonic territories crossed by MGE cells during their migration. In this study, we demonstrate that N-cadherin is a key player in the long-distance migration of future cortical interneurons. Using N-cadherin-coated substrate, we show that N-cadherin-dependent adhesion promotes the migration of mouse MGE cells in vitro. Conversely, mouse MGE cells electroporated with a construct interfering with cadherin function show reduced cell motility, leading process instability, and impaired polarization associated with abnormal myosin IIB dynamics. In vivo, the capability of electroporated MGE cells to invade the developing cortical plate is altered. Using genetic ablation of N-cadherin in mouse embryos, we show that N-cadherin-depleted MGEs are severely disorganized. MGE cells hardly exit the disorganized proliferative area. N-cadherin ablation at the postmitotic stage, which does not affect MGE morphogenesis, alters MGE cell motility and directionality. The tangential migration to the cortex of N-cadherin ablated MGE cells is delayed, and their radial migration within the cortical plate is perturbed. Altogether, these results identify N-cadherin as a pivotal adhesion substrate that activates cell motility in future cortical interneurons and maintains cell polarity over their long-distance migration to the developing cortex.
在大脑发育过程中,皮质 GABA 能中间神经元从它们产生的内侧神经节隆起(MGE)中长距离迁移到皮质定居。MGE 细胞表达细胞黏附分子 N-钙黏蛋白,这是一种同亲性细胞-细胞黏附分子,调节从神经上皮形态发生到突触形成的许多脑发育步骤。N-钙黏蛋白也在 MGE 细胞迁移过程中穿过的胚胎区域表达。在这项研究中,我们证明 N-钙黏蛋白是未来皮质中间神经元长距离迁移的关键参与者。使用 N-钙黏蛋白包被的基质,我们表明 N-钙黏蛋白依赖性黏附促进了体外培养的小鼠 MGE 细胞的迁移。相反,用干扰钙黏蛋白功能的构建体转染的小鼠 MGE 细胞显示出细胞迁移率降低,导致过程不稳定,并与异常肌球蛋白 IIB 动力学相关的极化受损。在体内,电穿孔的 MGE 细胞侵袭发育中的皮质板的能力发生改变。使用基因敲除小鼠胚胎中的 N-钙黏蛋白,我们表明,N-钙黏蛋白耗尽的 MGE 严重紊乱。MGE 细胞几乎无法离开紊乱的增殖区。在有丝分裂后阶段去除 N-钙黏蛋白,不会影响 MGE 形态发生,但会改变 MGE 细胞的迁移率和方向性。N-钙黏蛋白缺失的 MGE 细胞向皮质的切线迁移延迟,并且它们在皮质板内的放射状迁移受到干扰。总之,这些结果表明 N-钙黏蛋白是一种关键的黏附底物,它可以激活未来皮质中间神经元的细胞迁移,并在它们长距离迁移到发育中的皮质时维持细胞极性。