Suppr超能文献

基于流行病扩散的谱聚类

Spectral clustering with epidemic diffusion.

作者信息

Smith Laura M, Lerman Kristina, Garcia-Cardona Cristina, Percus Allon G, Ghosh Rumi

机构信息

California State University, Fullerton, California 92831, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042813. doi: 10.1103/PhysRevE.88.042813. Epub 2013 Oct 21.

Abstract

Spectral clustering is widely used to partition graphs into distinct modules or communities. Existing methods for spectral clustering use the eigenvalues and eigenvectors of the graph Laplacian, an operator that is closely associated with random walks on graphs. We propose a spectral partitioning method that exploits the properties of epidemic diffusion. An epidemic is a dynamic process that, unlike the random walk, simultaneously transitions to all the neighbors of a given node. We show that the replicator, an operator describing epidemic diffusion, is equivalent to the symmetric normalized Laplacian of a reweighted graph with edges reweighted by the eigenvector centralities of their incident nodes. Thus, more weight is given to edges connecting more central nodes. We describe a method that partitions the nodes based on the componentwise ratio of the replicator's second eigenvector to the first and compare its performance to traditional spectral clustering techniques on synthetic graphs with known community structure. We demonstrate that the replicator gives preference to dense, clique-like structures, enabling it to more effectively discover communities that may be obscured by dense intercommunity linking.

摘要

谱聚类被广泛用于将图划分为不同的模块或社区。现有的谱聚类方法使用图拉普拉斯算子的特征值和特征向量,该算子与图上的随机游走密切相关。我们提出了一种利用流行病扩散特性的谱划分方法。流行病是一个动态过程,与随机游走不同,它会同时转移到给定节点的所有邻居。我们表明,描述流行病扩散的复制子算子等同于一个重新加权图的对称归一化拉普拉斯算子,其边由其入射节点的特征向量中心性重新加权。因此,连接更中心节点的边被赋予更大的权重。我们描述了一种基于复制子第二特征向量与第一特征向量的分量比来划分节点的方法,并在具有已知社区结构的合成图上将其性能与传统谱聚类技术进行比较。我们证明,复制子优先选择密集的、类似团的结构,使其能够更有效地发现可能因社区间密集连接而被掩盖的社区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验