Suppr超能文献

氧化折叠在芋螺毒素进化中的重要性:通过基因复制和适应保持半胱氨酸密码子。

On the importance of oxidative folding in the evolution of conotoxins: cysteine codon preservation through gene duplication and adaptation.

机构信息

Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America.

出版信息

PLoS One. 2013 Nov 11;8(11):e78456. doi: 10.1371/journal.pone.0078456. eCollection 2013.

Abstract

Conotoxin genes are among the most rapidly evolving genes currently known; however, despite the well-established hypervariability of the intercysteine loops, the cysteines demonstrate significant conservation, with a site-specific codon bias for each cysteine in a family of conotoxins. Herein we present a novel rationale behind the codon-level conservation of the cysteines that comprise the disulfide scaffold. We analyze cysteine codon conservation using an internal reference and phylogenetic tools; our results suggest that the established codon conservation can be explained as the result of selective pressures linked to the production efficiency and folding of conotoxins, driving the conservation of cysteine at the amino-acid level. The preservation of cysteine has resulted in maintenance of the ancestral codon in most of the daughter lineages, despite the hypervariability of adjacent residues. We propose that the selective pressures acting on the venom components of cone snails involve an interplay of biosynthetic efficiency, activity at the target receptor and the importance of that activity to effective prey immobilization. Functional redundancy in the venom can thus serve as a buffer for the energy expenditure of venom production.

摘要

芋螺毒素基因是目前已知的进化速度最快的基因之一;然而,尽管半胱氨酸环的超变异性已经得到充分证实,但半胱氨酸仍具有显著的保守性,在芋螺毒素家族中,每个半胱氨酸都有特定的密码子偏好。本文提出了构成二硫键支架的半胱氨酸在密码子水平上保守的新原理。我们使用内部参考和系统发育工具分析半胱氨酸密码子的保守性;结果表明,已建立的密码子保守性可以解释为与芋螺毒素的生产效率和折叠相关的选择压力的结果,从而导致半胱氨酸在氨基酸水平上的保守。尽管相邻残基高度变异,但在大多数子系中,半胱氨酸的保守导致了祖先密码子的保留。我们提出,作用于芋螺毒液成分的选择压力涉及生物合成效率、靶受体活性以及该活性对有效猎物固定化的重要性之间的相互作用。因此,毒液中的功能冗余可以作为毒液产生的能量消耗的缓冲。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3164/3823881/159715ad330e/pone.0078456.g001.jpg

相似文献

2
Characterizing the evolution and functions of the M-superfamily conotoxins.
Toxicon. 2013 Dec 15;76:150-9. doi: 10.1016/j.toxicon.2013.09.020. Epub 2013 Sep 27.
3
Cosolvent-assisted oxidative folding of a bicyclic alpha-conotoxin ImI.
J Pept Sci. 2004 May;10(5):249-56. doi: 10.1002/psc.531.
4
Oxidative folding of conotoxins sharing an identical disulfide bridging framework.
FEBS J. 2005 Apr;272(7):1727-38. doi: 10.1111/j.1742-4658.2005.04602.x.
5
Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3782-91. doi: 10.1073/pnas.1501334112. Epub 2015 Jul 6.
9
The role of defensive ecological interactions in the evolution of conotoxins.
Mol Ecol. 2016 Jan;25(2):598-615. doi: 10.1111/mec.13504. Epub 2016 Jan 20.

引用本文的文献

本文引用的文献

1
Modulation of conotoxin structure and function is achieved through a multienzyme complex in the venom glands of cone snails.
J Biol Chem. 2012 Oct 5;287(41):34288-303. doi: 10.1074/jbc.M112.366781. Epub 2012 Aug 13.
4
Cone snail milked venom dynamics--a quantitative study of Conus purpurascens.
Toxicon. 2012 Jul;60(1):83-94. doi: 10.1016/j.toxicon.2012.03.019. Epub 2012 Apr 5.
5
Extensive and continuous duplication facilitates rapid evolution and diversification of gene families.
Mol Biol Evol. 2012 Aug;29(8):2019-29. doi: 10.1093/molbev/mss068. Epub 2012 Feb 15.
7
Evolution of Conus peptide genes: duplication and positive selection in the A-superfamily.
J Mol Evol. 2010 Feb;70(2):190-202. doi: 10.1007/s00239-010-9321-7. Epub 2010 Feb 9.
8
TxXIIIA, an atypical homodimeric conotoxin found in the Conus textile venom.
J Proteomics. 2009 Mar 6;72(2):219-26. doi: 10.1016/j.jprot.2009.01.021. Epub 2009 Jan 24.
9
Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from Conus bullatus.
Toxicon. 2009 Jan;53(1):90-8. doi: 10.1016/j.toxicon.2008.10.017. Epub 2008 Nov 20.
10
Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails.
Mol Ecol. 2008 Jun;17(12):3018-32. doi: 10.1111/j.1365-294X.2008.03804.x. Epub 2008 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验