Suppr超能文献

相似文献

1
Identification of significant features in DNA microarray data.
Wiley Interdiscip Rev Comput Stat. 2013 Jul;5(4). doi: 10.1002/wics.1260.
2
Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
BMC Bioinformatics. 2011;12 Suppl 5(Suppl 5):S7. doi: 10.1186/1471-2105-12-S5-S7. Epub 2011 Jul 27.
3
Robust gene selection methods using weighting schemes for microarray data analysis.
BMC Bioinformatics. 2017 Sep 2;18(1):389. doi: 10.1186/s12859-017-1810-x.
4
Independent component analysis of Alzheimer's DNA microarray gene expression data.
Mol Neurodegener. 2009 Jan 28;4:5. doi: 10.1186/1750-1326-4-5.
5
Using pre-existing microarray datasets to increase experimental power: application to insulin resistance.
PLoS Comput Biol. 2010 Mar 26;6(3):e1000718. doi: 10.1371/journal.pcbi.1000718.
6
Identification of potential biomarkers from microarray experiments using multiple criteria optimization.
Cancer Med. 2013 Apr;2(2):253-65. doi: 10.1002/cam4.69. Epub 2013 Feb 27.
7
Detecting biomarkers from microarray data using distributed correlation based gene selection.
Genes Genomics. 2020 Apr;42(4):449-465. doi: 10.1007/s13258-020-00916-w. Epub 2020 Feb 10.
8
Identifying genes relevant to specific biological conditions in time course microarray experiments.
PLoS One. 2013 Oct 11;8(10):e76561. doi: 10.1371/journal.pone.0076561. eCollection 2013.
9
A robust statistical method for detecting differentially expressed genes.
Appl Bioinformatics. 2005;4(4):247-51. doi: 10.2165/00822942-200504040-00004.
10
Filter versus wrapper gene selection approaches in DNA microarray domains.
Artif Intell Med. 2004 Jun;31(2):91-103. doi: 10.1016/j.artmed.2004.01.007.

引用本文的文献

1
An enhanced topologically significant directed random walk in cancer classification using gene expression datasets.
Saudi J Biol Sci. 2017 Dec;24(8):1828-1841. doi: 10.1016/j.sjbs.2017.11.024. Epub 2017 Nov 20.
2
A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.
PLoS One. 2015 Mar 4;10(3):e0118198. doi: 10.1371/journal.pone.0118198. eCollection 2015.

本文引用的文献

1
Estimating False Discovery Proportion Under Arbitrary Covariance Dependence.
J Am Stat Assoc. 2012;107(499):1019-1035. doi: 10.1080/01621459.2012.720478.
2
Ratio-based decisions and the quantitative analysis of cDNA microarray images.
J Biomed Opt. 1997 Oct;2(4):364-74. doi: 10.1117/12.281504.
3
Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data.
Stat Methods Med Res. 2013 Oct;22(5):519-36. doi: 10.1177/0962280211428386. Epub 2011 Nov 28.
4
Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling.
Bioinformatics. 2011 Jul 1;27(13):i383-91. doi: 10.1093/bioinformatics/btr247.
5
Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data.
Bioinformatics. 2011 Feb 15;27(4):495-501. doi: 10.1093/bioinformatics/btq690. Epub 2010 Dec 14.
6
Differential expression analysis for sequence count data.
Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. Epub 2010 Oct 27.
7
Tackling the widespread and critical impact of batch effects in high-throughput data.
Nat Rev Genet. 2010 Oct;11(10):733-9. doi: 10.1038/nrg2825. Epub 2010 Sep 14.
8
Semi-supervised recursively partitioned mixture models for identifying cancer subtypes.
Bioinformatics. 2010 Oct 15;26(20):2578-85. doi: 10.1093/bioinformatics/btq470. Epub 2010 Aug 16.
9
A framework for feature selection in clustering.
J Am Stat Assoc. 2010 Jun 1;105(490):713-726. doi: 10.1198/jasa.2010.tm09415.
10
baySeq: empirical Bayesian methods for identifying differential expression in sequence count data.
BMC Bioinformatics. 2010 Aug 10;11:422. doi: 10.1186/1471-2105-11-422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验