Pohrt Roman, Popov Valentin L
Technische Universität Berlin, Sekr. C8-4, Str. des 17. Juni 135, 10623 Berlin, Germany.
Sci Rep. 2013 Nov 21;3:3293. doi: 10.1038/srep03293.
We investigate the contact stiffness of an elastic half-space and a rigid indenter with randomly rough surface having a power spectrum C2D(q)proportional q(-2H-2), where q is the wave vector. The range of H[symbol: see text] is studied covering a wide range of roughness types from white noise to smooth single asperities. At low forces, the contact stiffness is in all cases a power law function of the normal force with an exponent α. For H > 2, the simple Hertzian behavior is observed . In the range of 0 < H < 2, the Pohrt-Popov behavior is valid (). For H < 0, a power law with a constant power of approximately 0.9 is observed, while the exact value depends on the number of modes used to produce the rough surface. Interpretation of the three regions is given both in the frame of the three dimensional contact mechanics and the method of dimensionality reduction (MDR). The influence of the long wavelength roll-off is investigated and discussed.
我们研究了弹性半空间与具有随机粗糙表面的刚性压头之间的接触刚度,该粗糙表面的功率谱(C_{2D}(q))与(q^{(-2H - 2)})成正比,其中(q)是波矢。研究了(H)的取值范围,涵盖从白噪声到光滑单峰等广泛的粗糙度类型。在低力作用下,接触刚度在所有情况下都是法向力的幂律函数,指数为(\alpha)。当(H > 2)时,观察到简单的赫兹行为。在(0 < H < 2)范围内,波特 - 波波夫行为有效。当(H < 0)时,观察到幂次约为(0.9)的幂律,而确切值取决于用于生成粗糙表面的模式数量。在三维接触力学框架和降维方法(MDR)中都给出了对这三个区域的解释。研究并讨论了长波长滚降的影响。