Service d'Urologie, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium.
Prostate. 2014 Apr;74(4):365-71. doi: 10.1002/pros.22757. Epub 2013 Nov 22.
Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with higher risk of prostate cancer (PCa). This study aimed to evaluate whether published SNPs improve the performance of a clinical risk-calculator in predicting prostate biopsy result.
Three hundred forty-six patients with a previous prostate biopsy (191 positive, 155 negative) were enrolled. After literature search, nine SNPs were selected for their statistically significant association with increased PCa risk. Allelic odds ratios were computed and a new logistic regression model was built integrating the clinical risk score (i.e., prior biopsy results, PSA level, prostate volume, transrectal ultrasound, and digital rectal examination) and a multilocus genetic risk score (MGRS). Areas under the receiver operating characteristic (ROC) curves (AUC) of the clinical score alone versus the integrated clinic-genetic model were compared. The added value of the MGRS was assessed using the Integrated Discrimination Improvement (IDI) and Net Reclassification Improvement (NRI) statistics.
Predictive performance of the integrated clinico-genetic model (AUC = 0.781) was slightly higher than predictive performance of the clinical score alone (AUC = 0.770). The prediction of PCa was significantly improved with an IDI of 0.015 (P-value = 0.035) and a continuous NRI of 0.403 (P-value < 0.001).
The predictive performance of the clinical model was only slightly improved by adding MGRS questioning the real clinical added value with regards to the cost of genetic testing and performance of current inexpensive clinical risk-calculators.
全基因组关联研究已经确定了与前列腺癌(PCa)风险增加相关的单核苷酸多态性(SNPs)。本研究旨在评估已发表的 SNPs 是否能提高临床风险计算器预测前列腺活检结果的性能。
共纳入 346 例有既往前列腺活检史的患者(191 例阳性,155 例阴性)。经过文献检索,选择了 9 个与 PCa 风险增加有统计学显著关联的 SNPs。计算等位基因比值,并构建一个新的逻辑回归模型,整合临床风险评分(即既往活检结果、PSA 水平、前列腺体积、经直肠超声和直肠指检)和多基因风险评分(MGRS)。比较临床评分模型与整合临床-遗传模型的受试者工作特征曲线下面积(AUC)。使用综合判别改善(IDI)和净重新分类改善(NRI)评估 MGRS 的附加价值。
整合临床遗传模型(AUC=0.781)的预测性能略高于单独临床评分(AUC=0.770)。MGRS 的加入使 PCa 的预测显著改善,IDI 为 0.015(P 值=0.035),连续 NRI 为 0.403(P 值<0.001)。
在加入 MGRS 后,临床模型的预测性能仅略有改善,这就引发了对于遗传检测的成本效益以及当前廉价的临床风险计算器的性能的质疑。