Reiner Miriam, Gelfeld Tatiana M
Technion, Israel Institute of Technology.
Technion, Israel Institute of Technology.
Int J Psychophysiol. 2014 Jul;93(1):38-44. doi: 10.1016/j.ijpsycho.2013.11.002. Epub 2013 Dec 1.
Monitoring mental load for optimal performance has become increasingly central with the recently evolving need to cope with exponentially increasing amounts of data. This paper describes a non-intrusive, objective method to estimate mental workload in an immersive virtual reality system, through analysis of frequencies of pupil fluctuations. We tested changes in mental workload with a number of task-repetitions, level of predictability of the task and the effect of prior experience in predictable task performance, on mental workload of unpredictable task performance. Two measures were used to calculate mental workload: the ratio of Low Frequency to High Frequency components of pupil fluctuations, and the High Frequency alone, all extracted from the Power Spectrum Density of pupil fluctuations. Results show that mental workload decreases with a number of repetitions, creating a mode in which the brain acts as an automatic controller. Automaticity during training occurs only after a minimal number of repetitions, which once achieved, resulted in further improvements in the performance of unpredictable motor tasks, following training in a predictable task. These results indicate that automaticity is a central component in the transfer of skills from highly predictable to low predictable motor tasks. Our results suggest a potentially applicable method to brain-computer-interface systems that adapt to human mental workload, and provide intelligent automated support for enhanced performance.
随着应对呈指数级增长的数据量这一需求的不断演变,监测心理负荷以实现最佳表现已变得愈发重要。本文描述了一种非侵入性的客观方法,通过分析瞳孔波动频率来估计沉浸式虚拟现实系统中的心理工作量。我们测试了任务重复次数、任务可预测性水平以及可预测任务表现中的先前经验对不可预测任务表现的心理工作量的影响。使用了两种测量方法来计算心理工作量:瞳孔波动低频成分与高频成分的比率,以及单独的高频成分,所有这些都从瞳孔波动的功率谱密度中提取。结果表明,心理工作量会随着重复次数的增加而降低,从而形成一种大脑充当自动控制器的模式。训练过程中的自动化仅在最少的重复次数之后才会出现,一旦实现,在可预测任务中进行训练后,不可预测运动任务的表现会进一步提高。这些结果表明,自动化是技能从高度可预测的运动任务向低可预测的运动任务转移的核心组成部分。我们的结果为脑机接口系统提出了一种潜在适用的方法,该系统可适应人类心理工作量,并为提高表现提供智能自动化支持。
Stud Health Technol Inform. 2013
Surg Innov. 2015-12
Hum Factors. 2017-9-30
J Neural Eng. 2012-7-25
J Neural Eng. 2016-4
Appl Ergon. 2017-7-28
Bioengineering (Basel). 2023-8-31
Front Neurosci. 2020-6-5
Int J Environ Res Public Health. 2019-7-30
Front Neurosci. 2019-4-30
Med Biol Eng Comput. 2018-6-18