Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
J Neurosci. 2013 Dec 4;33(49):19223-37. doi: 10.1523/JNEUROSCI.3041-13.2013.
The respiratory pattern generator modulates the sympathetic outflow, the strength of which is enhanced by challenges produced by hypoxia. This coupling is due to the respiratory-modulated presympathetic neurons in the rostral ventrolateral medulla (RVLM), but the underlining electrophysiological mechanisms remain unclear. For a better understanding of the neural substrates responsible for generation of this respiratory-sympathetic coupling, we combined immunofluorescence, single cell qRT-pCR, and electrophysiological recordings of the RVLM presympathetic neurons in in situ preparations from normal rats and rats submitted to a metabolic challenge produced by chronic intermittent hypoxia (CIH). Our results show that the spinally projected cathecholaminergic C1 and non-C1 respiratory-modulated RVLM presympathetic neurons constitute a heterogeneous neuronal population regarding the intrinsic electrophysiological properties, respiratory synaptic inputs, and expression of ionic currents, albeit all neurons presented persistent sodium current-dependent intrinsic pacemaker properties after synaptic blockade. A specific subpopulation of non-C1 respiratory-modulated RVLM presympathetic neurons presented enhanced excitatory synaptic inputs from the respiratory network after CIH. This phenomenon may contribute to the increased sympathetic activity observed in CIH rats. We conclude that the different respiratory-modulated RVLM presympathetic neurons contribute to the central generation of respiratory-sympathetic coupling as part of a complex neuronal network, which in response to the challenges produced by CIH contribute to respiratory-related increase in the sympathetic activity.
呼吸模式发生器调节交感神经输出,其强度通过缺氧引起的挑战得到增强。这种耦合是由于延髓腹外侧部(RVLM)的呼吸调节性节前神经元引起的,但潜在的电生理机制尚不清楚。为了更好地理解负责产生这种呼吸-交感耦合的神经基质,我们结合免疫荧光、单细胞 qRT-PCR 和 RVLM 节前神经元的原位电生理记录,在正常大鼠和慢性间歇性缺氧(CIH)引起代谢挑战的大鼠中进行。我们的结果表明,脊髓投射的儿茶酚胺能 C1 和非 C1 呼吸调节 RVLM 节前神经元在内在电生理特性、呼吸突触输入和离子电流表达方面构成异质神经元群体,尽管所有神经元在突触阻断后均表现出持续钠电流依赖性内在起搏特性。CIH 后,非 C1 呼吸调节 RVLM 节前神经元的一个特定亚群表现出增强的呼吸网络兴奋性突触输入。这种现象可能导致 CIH 大鼠中观察到的交感神经活动增加。我们得出结论,不同的呼吸调节 RVLM 节前神经元作为复杂神经网络的一部分有助于中央呼吸-交感耦合的产生,该网络响应 CIH 产生的挑战有助于与呼吸相关的交感神经活动增加。