Suppr超能文献

相似文献

1
Avalanches mediate crystallization in a hard-sphere glass.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):75-80. doi: 10.1073/pnas.1308338110. Epub 2013 Dec 4.
3
Brownian versus Newtonian devitrification of hard-sphere glasses.
Phys Rev E. 2017 Aug;96(2-1):020602. doi: 10.1103/PhysRevE.96.020602. Epub 2017 Aug 23.
4
Correlations between avalanches in the depinning dynamics of elastic interfaces.
Phys Rev E. 2020 Mar;101(3-1):032108. doi: 10.1103/PhysRevE.101.032108.
5
Crystallizing hard-sphere glasses by doping with active particles.
Soft Matter. 2014 Sep 21;10(35):6609-13. doi: 10.1039/c4sm01015a.
6
From ultra-fast growth to avalanche growth in devitrifying glasses.
J Chem Phys. 2023 Aug 14;159(6). doi: 10.1063/5.0155915.
7
Structural relaxation affecting shear-transformation avalanches in metallic glasses.
Phys Rev E. 2019 Oct;100(4-1):043002. doi: 10.1103/PhysRevE.100.043002.
8
Crystallization and aging in hard-sphere glasses.
J Phys Condens Matter. 2011 May 18;23(19):194117. doi: 10.1088/0953-8984/23/19/194117. Epub 2011 Apr 27.
10
Record-breaking avalanches in driven threshold systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052811. doi: 10.1103/PhysRevE.87.052811. Epub 2013 May 24.

引用本文的文献

1
Spatiotemporal observation of quantum crystallization of electrons.
Nat Commun. 2023 Sep 26;14(1):6011. doi: 10.1038/s41467-023-41731-7.
2
Crystallisation and polymorph selection in active Brownian particles.
Eur Phys J E Soft Matter. 2021 Sep 28;44(9):121. doi: 10.1140/epje/s10189-021-00108-8.
3
Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems.
Sci Adv. 2020 Oct 21;6(43). doi: 10.1126/sciadv.abc5916. Print 2020 Oct.
4
Ultrafast consolidation of bulk nanocrystalline titanium alloy through ultrasonic vibration.
Sci Rep. 2018 Jan 15;8(1):801. doi: 10.1038/s41598-018-19190-8.
8
The role of shear in crystallization kinetics: From suppression to enhancement.
Sci Rep. 2015 Sep 29;5:14610. doi: 10.1038/srep14610.
9
Crystal-crystal transitions: Mediated by a liquid.
Nat Mater. 2015 Jan;14(1):15-6. doi: 10.1038/nmat4182.

本文引用的文献

1
Emergence of crystal-like atomic dynamics in glasses at the nanometer scale.
Phys Rev Lett. 2013 May 3;110(18):185503. doi: 10.1103/PhysRevLett.110.185503. Epub 2013 May 1.
2
Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012312. doi: 10.1103/PhysRevE.87.012312. Epub 2013 Jan 28.
3
Compressed correlation functions and fast aging dynamics in metallic glasses.
J Chem Phys. 2013 Feb 7;138(5):054508. doi: 10.1063/1.4790131.
4
The physics of the colloidal glass transition.
Rep Prog Phys. 2012 Jun;75(6):066501. doi: 10.1088/0034-4885/75/6/066501. Epub 2012 May 16.
5
A parameter-free, solid-angle based, nearest-neighbor algorithm.
J Chem Phys. 2012 Jun 21;136(23):234107. doi: 10.1063/1.4729313.
6
Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.
Phys Rev Lett. 2011 Sep 2;107(10):108301. doi: 10.1103/PhysRevLett.107.108301. Epub 2011 Aug 31.
7
Experimental verification of rapid, sporadic particle motions by direct imaging of glassy colloidal systems.
Phys Rev Lett. 2011 Aug 5;107(6):065704. doi: 10.1103/PhysRevLett.107.065704. Epub 2011 Aug 4.
8
Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters.
J Phys Condens Matter. 2009 May 20;21(20):203103. doi: 10.1088/0953-8984/21/20/203103. Epub 2009 Apr 24.
9
Crystallization mechanism of hard sphere glasses.
Phys Rev Lett. 2011 May 27;106(21):215701. doi: 10.1103/PhysRevLett.106.215701. Epub 2011 May 24.
10
Crystallization and aging in hard-sphere glasses.
J Phys Condens Matter. 2011 May 18;23(19):194117. doi: 10.1088/0953-8984/23/19/194117. Epub 2011 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验