Department of Mathematics, Koç University, Sarıyer, 34450, Istanbul, Turkey.
Stat Med. 2014 May 10;33(10):1662-84. doi: 10.1002/sim.6053. Epub 2013 Dec 4.
Spatial clustering has important implications in various fields. In particular, disease clustering is of major public concern in epidemiology. In this article, we propose the use of two distance-based segregation indices to test the significance of disease clustering among subjects whose locations are from a homogeneous or an inhomogeneous population. We derive the asymptotic distributions of the segregation indices and compare them with other distance-based disease clustering tests in terms of empirical size and power by extensive Monte Carlo simulations. The null pattern we consider is the random labeling (RL) of cases and controls to the given locations. Along this line, we investigate the sensitivity of the size of these tests to the underlying background pattern (e.g., clustered or homogenous) on which the RL is applied, the level of clustering and number of clusters, or to differences in relative abundances of the classes. We demonstrate that differences in relative abundances have the highest influence on the empirical sizes of the tests. We also propose various non-RL patterns as alternatives to the RL pattern and assess the empirical power performances of the tests under these alternatives. We observe that the empirical size of one of the indices is more robust to the differences in relative abundances, and this index performs comparable with the best performers in literature in terms of power. We illustrate the methods on two real-life examples from epidemiology.
空间聚类在各个领域都具有重要意义。特别是在流行病学中,疾病聚类受到了公众的高度关注。本文提出了两种基于距离的隔离指数,用于检验同质或异质人群中个体的疾病聚类的显著性。我们推导出了这些隔离指数的渐近分布,并通过广泛的蒙特卡罗模拟比较了它们与其他基于距离的疾病聚类检验方法在经验大小和功效方面的性能。我们考虑的零假设模式是病例和对照的随机标记(RL)到给定的位置。沿着这条线,我们研究了这些检验的大小对应用 RL 的基础背景模式(例如聚类或同质)、聚类程度和聚类数量或类别的相对丰度差异的敏感性。我们证明了相对丰度的差异对检验的经验大小有最大的影响。我们还提出了各种非 RL 模式作为 RL 模式的替代方案,并评估了这些替代方案下检验的经验功效性能。我们观察到,其中一个指数的经验大小对相对丰度的差异更具鲁棒性,并且该指数在功效方面与文献中的最佳表现者相当。我们通过来自流行病学的两个实际示例来说明这些方法。