Suppr超能文献

TIGRA:一种用于断点组装的靶向迭代图路由组装器。

TIGRA: a targeted iterative graph routing assembler for breakpoint assembly.

机构信息

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;

出版信息

Genome Res. 2014 Feb;24(2):310-7. doi: 10.1101/gr.162883.113. Epub 2013 Dec 4.

Abstract

Recent progress in next-generation sequencing has greatly facilitated our study of genomic structural variation. Unlike single nucleotide variants and small indels, many structural variants have not been completely characterized at nucleotide resolution. Deriving the complete sequences underlying such breakpoints is crucial for not only accurate discovery, but also for the functional characterization of altered alleles. However, our current ability to determine such breakpoint sequences is limited because of challenges in aligning and assembling short reads. To address this issue, we developed a targeted iterative graph routing assembler, TIGRA, which implements a set of novel data analysis routines to achieve effective breakpoint assembly from next-generation sequencing data. In our assessment using data from the 1000 Genomes Project, TIGRA was able to accurately assemble the majority of deletion and mobile element insertion breakpoints, with a substantively better success rate and accuracy than other algorithms. TIGRA has been applied in the 1000 Genomes Project and other projects and is freely available for academic use.

摘要

近年来,下一代测序技术的发展极大地促进了我们对基因组结构变异的研究。与单核苷酸变异和小的插入缺失不同,许多结构变异在核苷酸分辨率上尚未完全表征。推导这些断点下的完整序列不仅对于准确发现至关重要,而且对于改变等位基因的功能表征也至关重要。然而,由于短读段对齐和组装的挑战,我们目前确定这些断点序列的能力受到限制。为了解决这个问题,我们开发了一种靶向迭代图路由组装器 TIGRA,它实现了一系列新的数据分析例程,从下一代测序数据中实现有效的断点组装。在我们使用来自 1000 基因组计划的数据进行的评估中,TIGRA 能够准确地组装大多数缺失和移动元件插入断点,其成功率和准确性明显优于其他算法。TIGRA 已应用于 1000 基因组计划和其他项目,并可免费供学术使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f087/3912421/38be0db8327d/310fig1.jpg

相似文献

1
TIGRA: a targeted iterative graph routing assembler for breakpoint assembly.
Genome Res. 2014 Feb;24(2):310-7. doi: 10.1101/gr.162883.113. Epub 2013 Dec 4.
2
A scalable and accurate targeted gene assembly tool (SAT-Assembler) for next-generation sequencing data.
PLoS Comput Biol. 2014 Aug 14;10(8):e1003737. doi: 10.1371/journal.pcbi.1003737. eCollection 2014 Aug.
3
B-assembler: a circular bacterial genome assembler.
BMC Genomics. 2022 May 11;23(Suppl 4):361. doi: 10.1186/s12864-022-08577-7.
4
dipSPAdes: Assembler for Highly Polymorphic Diploid Genomes.
J Comput Biol. 2015 Jun;22(6):528-45. doi: 10.1089/cmb.2014.0153. Epub 2015 Mar 3.
5
Mapsembler, targeted and micro assembly of large NGS datasets on a desktop computer.
BMC Bioinformatics. 2012 Mar 23;13:48. doi: 10.1186/1471-2105-13-48.
6
HySA: a Hybrid Structural variant Assembly approach using next-generation and single-molecule sequencing technologies.
Genome Res. 2017 May;27(5):793-800. doi: 10.1101/gr.214767.116. Epub 2017 Jan 19.
7
Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
PLoS Comput Biol. 2017 Jun 8;13(6):e1005595. doi: 10.1371/journal.pcbi.1005595. eCollection 2017 Jun.
8
9
A de novo next generation genomic sequence assembler based on string graph and MapReduce cloud computing framework.
BMC Genomics. 2012;13 Suppl 7(Suppl 7):S28. doi: 10.1186/1471-2164-13-S7-S28. Epub 2012 Dec 13.
10
Clover: a clustering-oriented de novo assembler for Illumina sequences.
BMC Bioinformatics. 2020 Nov 17;21(1):528. doi: 10.1186/s12859-020-03788-9.

引用本文的文献

3
4
The evolution of two transmissible cancers in Tasmanian devils.
Science. 2023 Apr 21;380(6642):283-293. doi: 10.1126/science.abq6453. Epub 2023 Apr 20.
5
TLsub: A transfer learning based enhancement to accurately detect mutations with wide-spectrum sub-clonal proportion.
Front Genet. 2022 Nov 22;13:981269. doi: 10.3389/fgene.2022.981269. eCollection 2022.
6
Identification of a growth factor required for culturing specific fastidious oral bacteria.
J Oral Microbiol. 2022 Nov 25;15(1):2143651. doi: 10.1080/20002297.2022.2143651. eCollection 2023.
7
Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing.
Front Genet. 2021 Feb 4;12:550676. doi: 10.3389/fgene.2021.550676. eCollection 2021.
8
Long-read-based human genomic structural variation detection with cuteSV.
Genome Biol. 2020 Aug 3;21(1):189. doi: 10.1186/s13059-020-02107-y.
9
Analysis of unmapped regions associated with long deletions in Korean whole genome sequences based on short read data.
Genomics Inform. 2019 Dec;17(4):e40. doi: 10.5808/GI.2019.17.4.e40. Epub 2019 Dec 20.
10
Structural variant calling: the long and the short of it.
Genome Biol. 2019 Nov 20;20(1):246. doi: 10.1186/s13059-019-1828-7.

本文引用的文献

1
Diverse mechanisms of somatic structural variations in human cancer genomes.
Cell. 2013 May 9;153(4):919-29. doi: 10.1016/j.cell.2013.04.010.
3
High-throughput microbial population genomics using the Cortex variation assembler.
Bioinformatics. 2013 Jan 15;29(2):275-6. doi: 10.1093/bioinformatics/bts673. Epub 2012 Nov 19.
4
An integrated map of genetic variation from 1,092 human genomes.
Nature. 2012 Nov 1;491(7422):56-65. doi: 10.1038/nature11632.
5
DELLY: structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics. 2012 Sep 15;28(18):i333-i339. doi: 10.1093/bioinformatics/bts378.
6
Using ERDS to infer copy-number variants in high-coverage genomes.
Am J Hum Genet. 2012 Sep 7;91(3):408-21. doi: 10.1016/j.ajhg.2012.07.004. Epub 2012 Aug 30.
7
BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data.
Bioinformatics. 2012 Jul 15;28(14):1923-4. doi: 10.1093/bioinformatics/bts272. Epub 2012 May 4.
8
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
J Comput Biol. 2012 May;19(5):455-77. doi: 10.1089/cmb.2012.0021. Epub 2012 Apr 16.
9
IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
Bioinformatics. 2012 Jun 1;28(11):1420-8. doi: 10.1093/bioinformatics/bts174. Epub 2012 Apr 11.
10
De novo assembly and genotyping of variants using colored de Bruijn graphs.
Nat Genet. 2012 Jan 8;44(2):226-32. doi: 10.1038/ng.1028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验