Suppr超能文献

多泡声致发光作为研究甲酸声解机理的工具。

Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis.

作者信息

Navarro Nathalie M, Pflieger Rachel, Nikitenko Sergey I

机构信息

CEA/DEN/MAR/DRCP/SCPS/LPCP, CEA Centre de Marcoule, BP 17171, 30207 Bagnols sur Cèze Cedex, France.

Institut de Chimie Séparative de Marcoule, ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Centre de Marcoule, BP 17171, 30207 Bagnols sur Cèze Cedex, France.

出版信息

Ultrason Sonochem. 2014 May;21(3):1026-9. doi: 10.1016/j.ultsonch.2013.11.010. Epub 2013 Nov 22.

Abstract

Sonoluminescence spectra collected from 0.1 to 3.0M aqueous solutions of formic acid sparged with argon show the OH(A(2)Σ(+)-X(2)Πi) and C2(d(3)Πg → a(3)Πu) emission bands and a broad continuum typical for multibubble sonoluminescence. The overall intensity of sonoluminescence and the sonochemical yield of HCOOH degradation vary in opposite directions: the sonoluminescence is quenched while the sonochemical yield increases with HCOOH concentration. By contrast, the concentration of formic acid has a relatively small effect on the intensity of C2 Swan band. It is concluded that C2 emission originates from CO produced by HCOOH degradation rather than from direct sonochemical degradation of HCOOH. The intensity of C2 band is much stronger at high ultrasonic frequency compared to 20 kHz ultrasound which is in line with higher yields of CO at high frequency. Another product of HCOOH sonolysis, carbon dioxide, strongly quenches sonoluminescence, most probably via collisional non-radiative mechanism.

摘要

从用氩气鼓泡的0.1至3.0M甲酸水溶液收集的声致发光光谱显示出OH(A(2)Σ(+)-X(2)Πi)和C2(d(3)Πg→a(3)Πu)发射带以及多泡声致发光典型的宽连续谱。声致发光的总体强度和HCOOH降解的声化学产率呈相反方向变化:随着HCOOH浓度的增加,声致发光被猝灭而声化学产率增加。相比之下,甲酸浓度对C2天鹅带的强度影响相对较小。得出的结论是,C2发射源自HCOOH降解产生的CO,而不是源自HCOOH的直接声化学降解。与20kHz超声相比,在高超声频率下C2带的强度要强得多,这与高频下较高的CO产率一致。HCOOH声解的另一种产物二氧化碳强烈猝灭声致发光,最有可能是通过碰撞非辐射机制。

相似文献

1
Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis.
Ultrason Sonochem. 2014 May;21(3):1026-9. doi: 10.1016/j.ultsonch.2013.11.010. Epub 2013 Nov 22.
2
Spectroscopy of Sonoluminescence and Sonochemistry in Water Saturated with N2-Ar Mixtures.
J Phys Chem B. 2015 Dec 31;119(52):15885-91. doi: 10.1021/acs.jpcb.5b10221. Epub 2015 Dec 18.
4
Toward a new paradigm for sonochemistry: Short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions.
Ultrason Sonochem. 2017 Mar;35(Pt B):623-630. doi: 10.1016/j.ultsonch.2016.02.003. Epub 2016 Feb 2.
5
Effect of ultrasonic frequency on the mechanism of formic acid sonolysis.
J Phys Chem B. 2011 Mar 10;115(9):2024-9. doi: 10.1021/jp109444h. Epub 2011 Feb 14.
6
Multibubble Sonochemistry and Sonoluminescence at 100 kHz: The Missing Link between Low- and High-Frequency Ultrasound.
J Phys Chem B. 2018 Jul 12;122(27):6989-6994. doi: 10.1021/acs.jpcb.8b04267. Epub 2018 Jun 27.
7
Sonochemiluminescence in an aqueous solution of Ru(bpy)Cl.
Ultrason Sonochem. 2018 Apr;42:526-531. doi: 10.1016/j.ultsonch.2017.12.013. Epub 2017 Dec 9.
8
Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water.
J Phys Chem A. 2012 May 24;116(20):4860-7. doi: 10.1021/jp301989b. Epub 2012 May 15.
10
Use of NH (AΠ-XΣ) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation.
Phys Chem Chem Phys. 2017 Oct 4;19(38):26272-26279. doi: 10.1039/c7cp04813k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验