Jia Chenxi, Wu Zhe, Lietz Christopher B, Liang Zhidan, Cui Qiang, Li Lingjun
School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States.
Anal Chem. 2014 Mar 18;86(6):2917-24. doi: 10.1021/ac401578p. Epub 2013 Dec 17.
Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.
在基于质谱的气相碎裂分析过程中,肽序列重排会导致肽和蛋白质的错误鉴定。因此,需要开发一种有效的方法来探究与序列重排相关的气相碎片离子异构体及其潜在的碎裂机制,这将有助于蛋白质组学研究中生物信息学算法的发展。在此,我们报道了首次使用电子转移解离(ETD)产生的诊断性碎片离子来探测气相肽碎片离子异构体的组成。结合离子淌度光谱法(IMS)和甲醛标记,这种新策略能够对b型碎片离子异构体进行定性和定量分析。ETD碎裂产生了指示前体离子异构体组成的诊断性碎片离子,随后对b离子异构体进行的IMS分析提供了它们的定量和结构信息。通过这种方法准确地分析了三种代表性b离子(来自三种不同肽的b9、b10和b33)的异构体组成。对b9离子异构体的IMS分析显示了这些结构之间的动态转化。此外,分子动力学模拟预测的理论漂移时间值与实验测量值高度吻合。我们的结果有力地支持了通过b离子环化进行肽序列重排的机制,并提供了首个实验证据来支持从分子前体离子到环状b离子(M → (c)b)的转化途径在能量(或动力学)上不太有利。