Institute of Low Temperature and Structure Research , Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland.
Inorg Chem. 2014 Jan 6;53(1):457-67. doi: 10.1021/ic402425n. Epub 2013 Dec 9.
We report the synthesis, crystal structure, thermal, dielectric, Raman, infrared, and magnetic properties of hydrogen and deuterated divalent metal formates, [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3], where M = Ni, Mn. On the basis of Raman and IR data, assignment of the observed modes to respective vibrations of atoms is proposed. The thermal studies show that for the Ni compounds deuteration leads to a decrease of the phase transition temperature Tc by 5.6 K, whereas it has a negligible effect on Tc in the Mn analogues. This behavior excludes the possibility of proton (deuteron) movement along the N-H···O (N-D···O) bonds as the microscopic origin of the first-order phase transition observed in these crystals below 190 K. According to single-crystal X-ray diffraction, the dimethylammonium (DMA) cations are dynamically disordered at room temperature, because the hydrogen bonds between the NH2 (ND2) groups and the metal-formate framework are disordered. The highly dynamic nature of hydrogen bonds in the high-temperature phases manifests in the Raman and IR spectra through very large bandwidth of modes involving vibrations of the NH2 (ND2) groups. The abrupt decrease in the bandwidth and shifts of modes near Tc signifies the ordering of hydrogen bonds and DMA(+) cations as well as significant distortion of the metal-formate framework across the phase transition. However, some amount of motion is retained by the DMA(+) cation in the ferroelectric phase and a complete freezing-in of this motion occurs below 100 K. The dielectric studies reveal pronounced dielectric dispersion that can be attributed to slow dynamics of large DMA(+) cations. The low-temperature studies also show that magnetic properties of the studied compounds can be explained assuming that they are ordered ferrimagnetically with nearly compensated magnetic moments of Ni and Mn. IR data reveal weak anomalies below 40 K that arise due to spin-phonon coupling. Our results also show that due to structural phase transition more significant distortion of the metal-formate framework occurs for the deuterated samples.
我们报告了二价金属甲酸盐的[(CH3)2NH2][M(HCOO)3]和[(CH3)2ND2][M(HCOO)3](其中 M = Ni、Mn)的合成、晶体结构、热学、介电、拉曼、红外和磁性质。基于拉曼和红外数据,提出了观察到的模式与相应原子振动的归属。热研究表明,对于 Ni 化合物,氘化导致相变温度 Tc 降低 5.6 K,而在 Mn 类似物中,它对 Tc 几乎没有影响。这种行为排除了质子(氘核)沿 N-H···O(N-D···O)键运动作为这些晶体在低于 190 K 下观察到的一级相变微观起源的可能性。根据单晶 X 射线衍射,二甲胺(DMA)阳离子在室温下处于动态无序状态,因为 NH2(ND2)基团与金属甲酸盐框架之间的氢键是无序的。高温相氢键的高度动态性质通过涉及 NH2(ND2)基团振动的模式的非常大带宽在拉曼和红外光谱中表现出来。在 Tc 附近带宽和模式的急剧减小表明氢键和 DMA(+)阳离子的有序以及金属甲酸盐框架的显著变形跨越相变。然而,DMA(+)阳离子在铁电相中有一定程度的运动,在 100 K 以下完全冻结。介电研究揭示了明显的介电色散,这可以归因于 DMA(+)阳离子的缓慢动力学。低温研究还表明,所研究化合物的磁性性质可以通过假设它们是有序的亚铁磁体来解释,其中 Ni 和 Mn 的磁矩几乎得到补偿。红外数据显示低于 40 K 的微弱异常,这是由于自旋声子耦合引起的。我们的结果还表明,由于结构相变,氘化样品的金属甲酸盐框架发生了更显著的变形。