Singh Manisha, Tervo Jani, Turunen Jari
J Opt Soc Am A Opt Image Sci Vis. 2013 Dec 1;30(12):2611-7. doi: 10.1364/JOSAA.30.002611.
We consider spatial shaping of partially coherent fields in two types of optical systems: a 2F Fourier-transforming system with the beam shaping element in the input plane and a 4F imaging system with the element in the intermediate Fourier plane. Different representations of the spatially partially coherent field in terms of fully coherent fields are examined to permit reduction of the dimensionality of the propagation integrals. The standard Mercer-type coherent-mode representation of the incident cross-spectral density (CSD) function is compared to expansions of CSD in either spatially or angularly shifted elementary field modes, all sharing the same spatial profile. In Fourier-transforming systems, the angular elementary-field representation proves computationally superior, while in imaging systems the spatially shifted elementary-field expansion is the best choice. Considering the Fourier-plane element as a generalized pupil, the latter leads to the concept's generalized amplitude associated with the elementary field and to a generalized transfer function of the system. These concepts reduce to the standard point spread function and the optical transfer function in the limit of spatial incoherence at the object plane. Examples of the effects of partial coherence in spatial beam shaping are given.
一种是在输入平面具有光束整形元件的2F傅里叶变换系统,另一种是在中间傅里叶平面具有该元件的4F成像系统。研究了用完全相干场表示空间部分相干场的不同形式,以降低传播积分的维数。将入射交叉谱密度(CSD)函数的标准默瑟型相干模式表示与CSD在空间或角度偏移的基本场模式下的展开式进行了比较,所有这些模式都具有相同的空间分布。在傅里叶变换系统中,角度基本场表示在计算上更具优势,而在成像系统中,空间偏移基本场展开是最佳选择。将傅里叶平面元件视为广义光瞳,后者引出了与基本场相关的概念广义振幅以及系统的广义传递函数。在物平面空间非相干的极限情况下,这些概念简化为标准点扩散函数和光学传递函数。给出了空间光束整形中部分相干效应的示例。