Suppr超能文献

微波辅助 TiO2 光子晶体自掺杂用于高效光电化学水分解。

Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting.

机构信息

Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division and ‡Imaging and Characterization Laboratory, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia.

出版信息

ACS Appl Mater Interfaces. 2014 Jan 8;6(1):691-6. doi: 10.1021/am404848n. Epub 2013 Dec 23.

Abstract

In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti(3+) self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm(-2) at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti(3+) can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands.

摘要

在本文中,我们报告了微波加热和乙二醇(一种温和的还原剂)的组合可以诱导 TiO2 中的 Ti(3+)自掺杂。选择具有顶层作为 TiO2 光子晶体(TiO2 NTPCs)的分层 TiO2 纳米管阵列作为基础光电电极。与未掺杂的相比,自掺杂的 TiO2 NTPCs 在可见光光电流密度方面增加了 10 倍,在模拟 AM 1.5G 照明下优化的饱和光电流密度在相对于可逆氢电极的 1.23 V 下被确定为 2.5 mA cm(-2),这可与基于 TiO2 的光电电极的最高值相媲美。光电化学性能的显著提高可以归因于自掺杂 TiO2 NTPCs 的形态和电子特性的合理耦合:(1)光子晶体层的周期性形态结构捕获宽带可见光,(2)自掺杂 Ti(3+) 诱导的能带间电子态可以在可见光区域被激发,(3)光子晶体层捕获的光被自掺杂的能带吸收。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验