Suppr超能文献

类风湿关节炎患者的行政或索赔数据识别方法的系统评价。

A systematic review of validated methods for identifying patients with rheumatoid arthritis using administrative or claims data.

机构信息

Division of Rheumatology, Vanderbilt University School of Medicine, 1161 21st Avenue South, D-3100, Medical Center North, Nashville, TN 37232-2358, USA.

Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, WOC1 Building, Room 454S, 1401 Rockville Pike, Rockville, MD 20852-1428, USA.

出版信息

Vaccine. 2013 Dec 30;31 Suppl 10:K41-61. doi: 10.1016/j.vaccine.2013.03.075.

Abstract

PURPOSE

To review the evidence supporting the validity of billing, procedural, or diagnosis code, or pharmacy claim-based algorithms used to identify patients with rheumatoid arthritis (RA) in administrative and claim databases.

METHODS

We searched the MEDLINE database from 1991 to September 2012 using controlled vocabulary and key terms related to RA and reference lists of included studies were searched. Two investigators independently assessed the full text of studies against pre-determined inclusion criteria and extracted the data. Data collected included participant and algorithm characteristics.

RESULTS

Nine studies reported validation of computer algorithms based on International Classification of Diseases (ICD) codes with or without free-text, medication use, laboratory data and the need for a diagnosis by a rheumatologist. These studies yielded positive predictive values (PPV) ranging from 34 to 97% to identify patients with RA. Higher PPVs were obtained with the use of at least two ICD and/or procedure codes (ICD-9 code 714 and others), the requirement of a prescription of a medication used to treat RA, or requirement of participation of a rheumatologist in patient care. For example, the PPV increased from 66 to 97% when the use of disease-modifying antirheumatic drugs and the presence of a positive rheumatoid factor were required.

CONCLUSIONS

There have been substantial efforts to propose and validate algorithms to identify patients with RA in automated databases. Algorithms that include more than one code and incorporate medications or laboratory data and/or required a diagnosis by a rheumatologist may increase the PPV.

摘要

目的

回顾支持将计费、程序或诊断代码或药房索赔为基础的算法用于识别行政和索赔数据库中类风湿关节炎(RA)患者的有效性的证据。

方法

我们使用与 RA 相关的受控词汇和关键词在 1991 年至 2012 年 9 月期间对 MEDLINE 数据库进行了检索,并检索了纳入研究的参考文献列表。两名调查员独立地根据预先确定的纳入标准评估研究的全文,并提取数据。收集的数据包括参与者和算法特征。

结果

九项研究报告了基于国际疾病分类(ICD)代码的计算机算法的验证,这些代码带有或不带有自由文本、药物使用、实验室数据和风湿病学家的诊断需求。这些研究得出的阳性预测值(PPV)范围为 34%至 97%,以识别 RA 患者。使用至少两个 ICD 和/或程序代码(ICD-9 代码 714 及其他)、需要处方治疗 RA 的药物、或要求风湿病学家参与患者护理,可获得更高的 PPV。例如,当需要使用疾病修饰抗风湿药物和存在阳性类风湿因子时,PPV 从 66%增加到 97%。

结论

已经做出了大量努力来提出和验证自动数据库中识别 RA 患者的算法。包含多个代码并纳入药物或实验室数据和/或需要风湿病学家诊断的算法可能会提高 PPV。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验