Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia.
Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.
Biomaterials. 2014 Feb;35(6):1857-68. doi: 10.1016/j.biomaterials.2013.11.023. Epub 2013 Dec 9.
Cell behaviours within tissues are influenced by a broad array of physical and biochemical microenvironmental factors. Whilst 'stiffness' is a recognised physical property of substrates and tissue microenvironments that influences many cellular behaviours, tissues and their extracellular matrices are not purely rigid but 'viscoelastic' materials, composed of both rigid-like (elastic) and dissipative (viscous) elements. This viscoelasticity results in materials displaying increased deformation with time under the imposition of a defined force or stress, a phenomenon referred to as time-dependent deformation or 'creep'. Previously, we compared the behaviour of human mesenchymal stem cells (hMSCs) on hydrogels tailored to have a constant stiffness, but to display varying levels of creep in response to an applied force. Using polyacrylamide as a model material, we showed that on high-creep hydrogels (HCHs), hMSCs displayed increased proliferation, spread area and differentiation towards multiple lineages, compared to their purely stiff analogue, with a particular propensity for differentiation towards a smooth muscle cell (SMC) lineage. In this present study, we investigate the mechanisms behind this phenomenon and show that hMSCs adhered to HCHs have increased expression of SMC induction factors, including soluble factors, ECM proteins and the cell-cell adhesion molecule, N-Cadherin. Further, we identify a key role for Rac1 signalling in mediating this increased N-Cadherin expression. Using a real-time Rac1-FRET biosensor, we confirm increased Rac1 activation on HCHs, an observation that is further supported functionally by observed increases in motility and lamellipodial protrusion rates of hMSCs. Increased Rac1 activity in hMSCs on HCHs provides underlying mechanisms for enhanced commitment towards a SMC lineage and the compensatory increase in spread area (isotonic tension) after a creep-induced loss of cytoskeletal tension on viscoelastic substrates, in contrast to previous studies that have consistently demonstrated up-regulation of RhoA activity with increasing substrate stiffness. Tuning substrate viscoelasticity to introduce varying levels of creep thus equips the biomaterial scientist or engineer with a new tool with which to tune and direct stem cell outcomes.
细胞在组织中的行为受到广泛的物理和生化微环境因素的影响。虽然“硬度”是影响许多细胞行为的底物和组织微环境的一种公认的物理特性,但组织及其细胞外基质并非纯粹的刚性材料,而是具有粘弹性的材料,由刚性(弹性)和耗散(粘性)元件组成。这种粘弹性导致材料在施加规定力或应力时随时间增加变形,这种现象称为时变变形或“蠕变”。以前,我们比较了人类间充质干细胞(hMSC)在针对特定力下表现出不同程度的蠕变而定制的具有恒定刚度的水凝胶上的行为。使用聚丙烯酰胺作为模型材料,我们表明在高蠕变水凝胶(HCH)上,与纯刚性模拟物相比,hMSC 显示出增殖增加、扩展面积增加和向多种谱系分化的趋势,特别是向平滑肌细胞(SMC)谱系分化的趋势。在本研究中,我们研究了这一现象背后的机制,并表明黏附在 HCH 上的 hMSC 表达了更多的 SMC 诱导因子,包括可溶性因子、细胞外基质蛋白和细胞间黏附分子 N-钙黏蛋白。此外,我们确定 Rac1 信号在介导这种增加的 N-钙黏蛋白表达中起着关键作用。使用实时 Rac1-FRET 生物传感器,我们证实了 HCH 上 Rac1 的激活增加,这一观察结果进一步通过观察到 hMSC 的运动性和片状伪足突起率增加得到了功能上的支持。HCH 上 hMSC 中 Rac1 活性的增加为增强向 SMC 谱系的分化以及在粘弹性基质上由于细胞骨架张力的蠕变诱导损失而导致的扩展面积(等张张力)的代偿性增加提供了潜在机制,这与先前的研究一致,这些研究一致表明随着基质硬度的增加,RhoA 活性上调。因此,调整基质粘弹性以引入不同程度的蠕变,为生物材料科学家或工程师提供了一种新工具,用于调整和指导干细胞的结果。