ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
Adv Colloid Interface Sci. 2014 Apr;206:195-206. doi: 10.1016/j.cis.2013.11.004. Epub 2013 Nov 18.
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.
在过去的几十年中,已经发表了许多关于蛋白质吸附层界面流变响应的研究。这些研究的比较以及检索用于比较蛋白质界面活性的通用参数受到以下事实的阻碍:使用了不同的边界条件(例如物理化学、仪器、界面)。在本工作中,我们回顾了以前的研究,并尝试对大量蛋白质性质与其吸附膜之间进行统一的比较方法。在许多常见的食品级蛋白质中,我们选择牛血清白蛋白、β-乳球蛋白和溶菌酶,因为它们在热力学稳定性上存在差异,并研究了它们在空气/水和柠檬烯/水界面上的吸附。为了实现这一目标,我们 i)系统地分析了使用滴形分析张力计根据表面压力升高的蛋白质吸附动力学,和 ii)在相同的实验条件下使用界面剪切流变仪研究了剪切应力下的界面层性质。我们可以表明,热力学上不太稳定的蛋白质通常吸附速度更快,在空气/水界面上形成的薄膜具有更高的剪切流变性质。当在柠檬烯/水界面上吸附时,相同的蛋白质表现出类似的行为,但速度较慢。