Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan.
Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan.
Biochem Biophys Res Commun. 2014 Jan 10;443(2):677-82. doi: 10.1016/j.bbrc.2013.12.025. Epub 2013 Dec 11.
We have shown previously that the Streptococcus mutans F-type H(+)-ATPase (F(O)F(1)) c subunit gene could complement Escherichia coli defective in the corresponding gene, particularly at acidic pH (Araki et al., (2013) [14]). In this study, the entire S. mutans F(O)F(1) was functionally assembled in the E. coli plasma membrane (SF(O)F(1)). Membrane SF(O)F(1) ATPase showed optimum activity at pH 7, essentially the same as that of the S. mutans, although the activity of E. coli F(O)F(1) (EF(O)F(1)) was optimum at pH≥9. The membranes showed detectable ATP-dependent H(+)-translocation at pH 5.5-6.5, but not at neutral conditions (pH≥7), consistent with the role of S. mutans F(O)F(1) to pump H(+) out of the acidic cytoplasm. A hybrid F(O)F(1), consisting of membrane-integrated F(O) and -peripheral F(1) sectors from S. mutans and E. coli (SF(O)EF(1)), respectively, essentially showed the same pH profile as that of EF(O)F(1) ATPase. However, ATP-driven H(+)-transport was similar to that by SF(O)F(1), with activity at acidic pH. Replacement of the conserved c subunit Glu53 in SF(O)F(1) abolished H(+)-transport at pH 6 or 7, suggesting its role in H(+) transport. Mutations in the SF(O)F(1) c subunit, Ser17Ala or Glu20Ile, changed the pH dependency of H(+)-transport, and the F(O) could transport H(+) at pH 7, as the membranes with EF(O)F(1). Ser17, Glu20, and their vicinity were suggested to be involved in H(+)-transport in S. mutans at acidic pH.
我们之前已经表明,变形链球菌 F 型 H(+)-ATP 酶 (F(O)F(1)) c 亚基基因可以在大肠杆菌中补充相应基因缺陷,特别是在酸性 pH 值下 (Araki 等人,(2013) [14])。在这项研究中,整个变形链球菌 F(O)F(1) 在大肠杆菌质膜中进行了功能组装 (SF(O)F(1))。膜 SF(O)F(1) ATP 酶在 pH7 时表现出最佳活性,与变形链球菌基本相同,尽管大肠杆菌 F(O)F(1) (EF(O)F(1)) 的最佳活性在 pH≥9。膜在 pH5.5-6.5 下显示出可检测的 ATP 依赖性 H(+)转运,但在中性条件下(pH≥7)则没有,这与变形链球菌 F(O)F(1) 将 H(+)泵出酸性细胞质的作用一致。一种由变形链球菌和大肠杆菌的膜整合 F(O)和 -外周 F(1) 部分组成的杂交 F(O)F(1) (SF(O)EF(1)),其 pH 曲线基本与 EF(O)F(1) ATP 酶相同。然而,ATP 驱动的 H(+)转运与 SF(O)F(1) 相似,在酸性 pH 值下具有活性。在 SF(O)F(1) 中替换保守的 c 亚基谷氨酸 53 会在 pH6 或 7 时消除 H(+)转运,表明其在 H(+)转运中的作用。SF(O)F(1) 的 c 亚基丝氨酸 17 到丙氨酸或谷氨酸 20 到异亮氨酸的突变改变了 H(+)转运的 pH 依赖性,并且 F(O)可以在 pH7 下转运 H(+),因为膜上有 EF(O)F(1)。丝氨酸 17、谷氨酸 20 及其附近区域可能参与了变形链球菌在酸性 pH 值下的 H(+)转运。