Menegatti E, Guarneri M, Bolognesi M, Ascenzi P, Amiconi G
J Mol Biol. 1986 Sep 20;191(2):295-7. doi: 10.1016/0022-2836(86)90266-4.
The effect of pH and temperature on the association equilibrium constant (Ka) for the binding of the bovine basic pancreatic trypsin inhibitor (BPTI Kunitz inhibitor) to human Lys77-plasmin has been investigated. Ka values decrease with decreasing pH, reflecting the acid-pK and -midpoint shifts, upon BPTI binding, of a single ionizable group, between pH 5 and 9, and of a three-proton transition, between pH 3 and 5. At pH 8.0, values of thermodynamic parameters for BPTI binding to human Lys77-plasmin are: Ka = 1.2 X 10(9) M-1, delta G degree = -12.2 kcal/mol, and delta S degree = +49 entropy units (at 21 degrees C); and delta H degree = +2.3 kcal/mol (temperature independent between 5 degrees C and 45 degrees C; 1 kcal = 4184 J). BPTI binding properties of human Lys77-plasmin have been analysed in parallel with those of serine (pro)enzymes acting on cationic and non-cationic substrates. Considering the known molecular structures of homologous serine (pro)enzymes, or Kunitz and Kazal-type inhibitors and of their complexes, the observed binding behaviour of BPTI to human Lys77-plasmin was related to the inferred stereochemistry of the enzyme-inhibitor contact region.