Center for Ecological Research, Kyoto University, 2 Hirano, Otsu, Shiga 520-2113, Japan.
Tree Physiol. 2014 Jan;34(1):15-28. doi: 10.1093/treephys/tpt107. Epub 2013 Dec 11.
In tropical dry forests, uppermost-canopy leaves of evergreen trees possess the ability to use water more conservatively compared with drought-deciduous trees, which may result from significant differences in the photoprotective mechanisms between functional types. We examined the seasonal variations in leaf gas exchange, chlorophyll fluorescence and the amounts of photosynthetic pigments within lamina of the uppermost-canopy leaves of three drought-deciduous trees (Vitex peduncularis Wall., Xylia xylocarpa (Roxb.) W. Theob., Shorea siamensis Miq.), a semi-deciduous tree (Irvingia malayana Miq.) and two evergreen trees (Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels) in Thailand. Area-based maximum carbon assimilation rates (Amax) decreased during the dry season, except in S. siamensis. The electron transport rate (ETR) remained unchanged in deciduous trees, but decreased during the dry season in evergreen and semi-deciduous trees. In the principal component analysis, the first axis (Axis 1) accounted for 44.3% of the total variation and distinguished deciduous from evergreen trees. Along Axis 1, evergreen trees were characterized by a high Stern-Volmer non-photochemical quenching coefficient (NPQ), high xanthophyll cycle pigments/chlorophyll and a high de-epoxidation state of the xanthophyll cycle, whereas the deciduous trees were characterized by a high ETR, a high quantum yield of PSII (ΦPSII = (Fm(') -F)/Fm(')) and a high mass-based Amax under high-light conditions. These findings indicate that drought-deciduous trees showing less conservative water use tend to dissipate a large proportion of electron flow through photosynthesis or alternative pathways. In contrast, the evergreens showed more conservative water use, reduced Amax and ETR and enhanced NPQ and xanthophyll cycle pigments/chlorophyll during the dry season, indicating that down-regulated photosynthesis with enhanced thermal dissipation of excess light energy played an important role in photoprotection. Trees with different water uses and leaf lifespans appear to employ different photoprotective mechanisms to overcome the unfavorable dry-season drought. Our data may suggest that future changes in precipitation will strongly impinge on forest structure and functions.
在热带干旱森林中,与旱生落叶树相比,常绿树的最上层树冠叶片具有更保守的水分利用能力,这可能是由于两种功能类型之间在光保护机制上存在显著差异。我们研究了泰国三种旱生落叶树(Vitex peduncularis Wall.、Xylia xylocarpa(Roxb.)W. Theob.、Shorea siamensis Miq.)、一种半落叶树(Irvingia malayana Miq.)和两种常绿树(Hopea ferrea Lanessan 和 Syzygium cumini(L.)Skeels)最上层树冠叶片的叶片气体交换、叶绿素荧光和类囊体色素含量的季节性变化。基于面积的最大碳同化率(Amax)在旱季下降,除了 S. siamensis 外。电子传递率(ETR)在落叶树中保持不变,但在常绿树和半落叶树中在旱季下降。在主成分分析中,第一轴(Axis 1)占总变异的 44.3%,将落叶树与常绿树区分开来。沿着 Axis 1,常绿树的特点是高 Stern-Volmer 非光化学猝灭系数(NPQ)、高叶黄素循环色素/叶绿素和高叶黄素循环去氧化状态,而落叶树的特点是高 ETR、高光条件下 PSII 的量子产率(ΦPSII=(Fm(')-F)/Fm('))和高基于质量的 Amax。这些发现表明,水分利用较不保守的旱生落叶树往往会通过光合作用或替代途径耗散大量电子流。相比之下,常绿树在旱季表现出更保守的水分利用,降低了 Amax 和 ETR,并增强了 NPQ 和叶黄素循环色素/叶绿素,表明下调光合作用并增强过剩光能的热耗散在光保护中起着重要作用。具有不同水分利用和叶片寿命的树木似乎采用不同的光保护机制来克服不利的旱季干旱。我们的数据可能表明,未来降水的变化将强烈影响森林结构和功能。