Suppr超能文献

CREB1 的α 和 Δ 异构体对于维持正常的肺血管阻力是必需的。

The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

机构信息

University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland.

University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland ; Department of Anaesthesia and Critical Care, St Vincent's University Hospital, Dublin, Ireland.

出版信息

PLoS One. 2013 Dec 9;8(12):e80637. doi: 10.1371/journal.pone.0080637. eCollection 2013.

Abstract

Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ) mice). Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ) mice. CREB(αΔ) mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ) and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ). CREB(αΔ) mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

摘要

慢性缺氧会导致与肺血管结构改变和持续血管收缩相关的肺动脉高压。负责这些独特变化的转录机制尚不清楚。我们之前曾报道过,CREB1 在肺部对肺泡缺氧有反应,但在其他器官中没有反应。为了直接研究 CREB1 的α和Δ同工型在调节肺血管阻力中的作用,我们检查了这些同工型的 CREB1 通过基因突变失活的小鼠的反应,只保留β同工型完整(CREB(αΔ) 小鼠)。在这里,我们报告说 CREB 调节基因的表达在 CREB(αΔ) 小鼠的肺部发生了改变。与野生型相比,CREB(αΔ) 小鼠的肺血管阻力更大,无论是在常氧基础上还是在暴露于缺氧环境 3 周后。在 CREB(αΔ) 和野生型小鼠之间,rho 激酶介导的血管收缩没有差异。对肺血管结构的体视学分析显示,缺氧野生型小鼠的血管壁增厚和管腔缩小,在 CREB(αΔ) 中也观察到类似的变化。CREB(αΔ) 小鼠的肺部更大,上皮表面密度降低,提示肺顺应性增加。这些发现表明,CREB1 的α和Δ同工型调节肺内稳态基因表达,而这些同工型的正常活性对于在常氧和缺氧条件下维持低肺血管阻力以及维持正常肺泡结构是必不可少的。增强 CREB1 的α和Δ同工型作用的干预措施值得在缺氧性肺病中进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d322/3857174/f637d8a8ac58/pone.0080637.g001.jpg

相似文献

1
The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.
PLoS One. 2013 Dec 9;8(12):e80637. doi: 10.1371/journal.pone.0080637. eCollection 2013.
3
Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior.
Neuroscience. 2005;133(3):647-55. doi: 10.1016/j.neuroscience.2005.03.017.
4
Hypoxia selectively activates the CREB family of transcription factors in the in vivo lung.
Am J Respir Crit Care Med. 2008 Nov 1;178(9):977-83. doi: 10.1164/rccm.200712-1890OC. Epub 2008 Aug 8.
6
Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice.
Neuropsychopharmacology. 2004 Jun;29(6):1122-33. doi: 10.1038/sj.npp.1300416.
7
Behavioral analysis of CREB alphadelta mutation on a B6/129 F1 hybrid background.
Hippocampus. 2002;12(1):18-26. doi: 10.1002/hipo.10003.
9
Alterations in morphine-induced reward, locomotor activity, and thermoregulation in CREB-deficient mice.
Brain Res. 2005 Jan 25;1032(1-2):193-9. doi: 10.1016/j.brainres.2004.11.013.

引用本文的文献

1
Developmental expression of CREB1 and NFATC2 in pig embryos.
Mol Biol Rep. 2023 Jul;50(7):6265-6271. doi: 10.1007/s11033-023-08501-6. Epub 2023 May 12.
2
CREB1 Transcriptionally Activates LTBR to Promote the NF-B Pathway and Apoptosis in Lung Epithelial Cells.
Comput Math Methods Med. 2022 Sep 9;2022:9588740. doi: 10.1155/2022/9588740. eCollection 2022.
4
The effects of genetic deletion of Macrophage migration inhibitory factor on the chronically hypoxic pulmonary circulation.
Pulm Circ. 2020 Oct 26;10(4):2045894020941352. doi: 10.1177/2045894020941352. eCollection 2020 Oct-Dec.
5
CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension.
Pulm Circ. 2020 Apr 14;10(2):2045894019898374. doi: 10.1177/2045894019898374. eCollection 2020 Apr-Jun.
6
The potential role of TRPV1 in pulmonary hypertension: Angel or demon?
Channels (Austin). 2019 Dec;13(1):235-246. doi: 10.1080/19336950.2019.1631106.

本文引用的文献

2
Physiological and pathological angiogenesis in the adult pulmonary circulation.
Compr Physiol. 2011 Jul;1(3):1473-508. doi: 10.1002/cphy.c100034.
3
Hypoxia-induced inflammation in the lung: a potential therapeutic target in acute lung injury?
Am J Respir Cell Mol Biol. 2013 Mar;48(3):271-9. doi: 10.1165/rcmb.2012-0137TR. Epub 2012 Oct 18.
4
BDNF/TrkB signaling augments smooth muscle cell proliferation in pulmonary hypertension.
Am J Pathol. 2012 Dec;181(6):2018-29. doi: 10.1016/j.ajpath.2012.08.028. Epub 2012 Oct 8.
5
The activin A antagonist follistatin inhibits asthmatic airway remodelling.
Thorax. 2013 Jan;68(1):9-18. doi: 10.1136/thoraxjnl-2011-201128. Epub 2012 Oct 10.
7
Gremlin plays a key role in the pathogenesis of pulmonary hypertension.
Circulation. 2012 Feb 21;125(7):920-30. doi: 10.1161/CIRCULATIONAHA.111.038125. Epub 2012 Jan 13.
8
Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho.
Am J Physiol Lung Cell Mol Physiol. 2012 Jan 1;302(1):L13-26. doi: 10.1152/ajplung.00016.2011. Epub 2011 Sep 16.
9
NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice.
Am J Physiol Lung Cell Mol Physiol. 2011 Dec;301(6):L872-80. doi: 10.1152/ajplung.00405.2010. Epub 2011 Sep 9.
10
Reduction of reactive oxygen species prevents hypoxia-induced CREB depletion in pulmonary artery smooth muscle cells.
J Cardiovasc Pharmacol. 2011 Aug;58(2):181-91. doi: 10.1097/FJC.0b013e31821f2773.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验