COMP Centre of Excellence, Department of Applied Physics, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland.
Facultat de Física, Departament Estructura i Constituents de la Materia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain.
Nat Commun. 2013;4:2927. doi: 10.1038/ncomms3927.
A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.
从铁磁材料中的巴克豪森效应到塑性变形和地震,众多系统对外界缓慢的驱动都会做出响应,表现出间歇性的、无标度的突发动态或噼啪噪声。突发是按幂律分布大小的,并且具有典型的平均形状:这是突发系统的两个最重要的特征。通过采用标度理论、广泛的数值模拟以及来自裂纹扩展实验的数据,我们展示了平均突发形状如何随突发动力学的普遍性类而演变。它遵循一个简单的标度形式,由两个数字参数化,一个是将平均突发大小与其持续时间联系起来的标度指数,另一个是描述突发时间不对称性的参数。后者反映了突发动力学中时间反转对称性的破坏,这是由介导突发动力学的局部相互作用核的性质引起的。