Curr Biol. 2013 Nov 4;23(21):2169-75. doi: 10.1016/j.cub.2013.09.012.
Humans develop rich mental representations that guide their behavior in a variety of everyday tasks. However, it is unknown whether these representations, often formalized as priors in Bayesian inference, are specific for each task or subserve multiple tasks. Current approaches cannot distinguish between these two possibilities because they cannot extract comparable representations across different tasks. Here, we develop a novel method, termed cognitive tomography, that can extract complex, multidimensional priors across tasks. We apply this method to human judgments in two qualitatively different tasks, "familiarity" and "odd one out," involving an ecologically relevant set of stimuli, human faces. We show that priors over faces are structurally complex and vary dramatically across subjects, but are invariant across the tasks within each subject. The priors we extract from each task allow us to predict with high precision the behavior of subjects for novel stimuli both in the same task as well as in the other task. Our results provide the first evidence for a single high-dimensional structured representation of a naturalistic stimulus set that guides behavior in multiple tasks. Moreover, the representations estimated by cognitive tomography can provide independent, behavior-based regressors for elucidating the neural correlates of complex naturalistic priors.
人类形成了丰富的心理表象,这些表象指导着他们在各种日常任务中的行为。然而,目前尚不清楚这些表象(通常在贝叶斯推理中被形式化为先验概率)是针对每个任务特定的,还是可以服务于多个任务。当前的方法无法区分这两种可能性,因为它们无法跨不同任务提取可比的表示。在这里,我们开发了一种新的方法,称为认知层析成像,它可以跨任务提取复杂的多维先验概率。我们将这种方法应用于两个性质不同的任务——“熟悉度”和“异类排除”中的人类判断,涉及到一组生态相关的刺激,即人脸。我们表明,人脸的先验概率在结构上是复杂的,并且在不同的个体之间有很大的差异,但在每个个体的任务内是不变的。我们从每个任务中提取的先验概率允许我们以高精度预测主体对同一任务以及其他任务中的新刺激的行为。我们的结果首次提供了关于引导多种任务中行为的自然刺激集的单一高维结构表示的证据。此外,认知层析成像估计的表示可以提供独立的、基于行为的回归量,用于阐明复杂自然先验的神经相关性。