Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA. Physics Department, Naval Postgraduate School, Monterey, CA 93943, USA.
J Phys Condens Matter. 2014 Jan 29;26(4):046001. doi: 10.1088/0953-8984/26/4/046001. Epub 2013 Dec 20.
The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.
本研究通过跟踪晶体轨道杂化,提供了对磁场压力依赖性的新见解,压力高达 600 GPa,涉及已知的 hcp、bcc 和 fcc 铁。Birch-Murnaghan 状态方程参数为:bcc:V0 = 11.759 A(3)/atom,K0 = 177.72 GPa;hcp:V0 = 10.525 A(3)/atom,K0 = 295.16 GPa;fcc:V0 = 10.682 A(3)/atom,K0 = 274.57 GPa。这些参数与以前的研究相比是有利的。与以前的研究一致,我们发现,在高于 50 GPa 和 60 GPa 的压力下,紧密堆积的 hcp 和 fcc 相是非磁性的。预计铁的主要磁性特征至少在平衡体积约 6%的扩展范围内是不变的。我们的结果预测,过扩展的 fcc 铁的磁性通过中间自旋态消失。这一特征表明,过扩展的晶格可用于稳定特定的磁性状态。轨道杂化的分析表明,高压下的磁性 bcc 结构通过分裂多数和少数自旋带来稳定。发现 bcc 相至少在 600 GPa 下是磁性的;然而,磁性不足以稳定 bcc 相本身,至少在低温下是如此。最后,对轨道对总能量的贡献分析提供了证据,表明非磁性 hcp 和 fcc 相在地球核心压力下可能比 bcc 相更稳定。