Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.
Department of Experimental and Clinical Medicine, Unit of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy.
Neurobiol Dis. 2014 Apr;64:48-59. doi: 10.1016/j.nbd.2013.11.006. Epub 2013 Dec 19.
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated that the activation of Group I metabotropic Glu autoreceptors, belonging to both type 1 and type 5 receptors (mGluR1 and mGluR5), at glutamatergic spinal cord nerve terminals, produces excessive Glu release in mice over-expressing human superoxide-dismutase carrying the G93A point mutation (SOD1(G93A)), a widely used animal model of human ALS. To establish whether these receptors are implicated in ALS, we generated mice expressing half dosage of mGluR1 in the SOD1(G93A) background (SOD1(G93A)Grm1(crv4/+)), by crossing the SOD1(G93A) mutant mouse with the Grm1(crv4/+) mouse, lacking mGluR1 because of a spontaneous recessive mutation. SOD1(G93A)Grm1(crv4/+) mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1(G93A) mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1(G93A)Grm1(crv4/+)compared to SOD1(G93A) mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors.
肌萎缩侧索硬化症(ALS)是一种迟发性致命的神经退行性疾病,反映了上下运动神经元(MNs)的退化。ALS 的病因和神经元死亡的机制在很大程度上仍然不清楚,因此阻碍了有效治疗方法的建立。谷氨酸(Glu)介导的兴奋性毒性在 ALS 中的 MN 退化中起主要作用。我们最近证明,在过度表达携带 G93A 点突变的人超氧化物歧化酶的小鼠(SOD1(G93A))的脊髓谷氨酸能神经末梢中,激活 I 组代谢型谷氨酸受体,属于 1 型和 5 型受体(mGluR1 和 mGluR5),会产生过量的 Glu 释放,这是一种广泛使用的人类 ALS 动物模型。为了确定这些受体是否与 ALS 有关,我们通过将 SOD1(G93A)突变小鼠与 Grm1(crv4/+)小鼠杂交,在 SOD1(G93A)背景下产生了表达 mGluR1 半剂量的小鼠(SOD1(G93A)Grm1(crv4/+)),Grm1(crv4/+)小鼠由于自发隐性突变而缺乏 mGluR1。与 SOD1(G93A)小鼠相比,SOD1(G93A)Grm1(crv4/+)小鼠表现出延长的存活概率、延迟的病理学发作、较慢的疾病进展和改善的运动表现。这些效应与 mGluR5 表达减少、MN 数量增加、星形胶质细胞和小胶质细胞激活减少、金属硫蛋白和过氧化氢酶 mRNA 表达正常化、线粒体损伤减少以及 SOD1(G93A)Grm1(crv4/+)小鼠脊髓中异常 Glu 释放减少有关。这些结果表明,较低的 mGluR1 组成型水平对实验性 ALS 小鼠有显著的积极影响,从而为通过选择性阻断 I 组代谢型谷氨酸受体来治疗 ALS 提供了未来的药理学方法的依据。