Suppr超能文献

表皮生长因子受体(EGFR)野生型拮抗胶质母细胞瘤中EGFRvIII介导的间质上皮转化因子(Met)激活。

EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma.

作者信息

Li L, Puliyappadamba V T, Chakraborty S, Rehman A, Vemireddy V, Saha D, Souza R F, Hatanpaa K J, Koduru P, Burma S, Boothman D A, Habib A A

机构信息

Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Oncogene. 2015 Jan 2;34(1):129-134. doi: 10.1038/onc.2013.534. Epub 2013 Dec 23.

Abstract

Epidermal growth factor receptor (EGFR)vIII is the most common EGFR mutant found in glioblastoma (GBM). EGFRvIII does not bind ligand, is highly oncogenic and is usually coexpressed with EGFR wild type (EGFRwt). EGFRvIII activates Met, and Met contributes to EGFRvIII-mediated oncogenicity and resistance to treatment. Here, we report that addition of EGF results in a rapid loss of EGFRvIII-driven Met phosphorylation in glioma cells. Met is associated with EGFRvIII in a physical complex. Addition of EGF results in a dissociation of the EGFRvIII-Met complex with a concomitant loss of Met phosphorylation. Consistent with the abrogation of Met activation, addition of EGF results in the inhibition of EGFRvIII-mediated resistance to chemotherapy. Thus, our study suggests that ligand in the milieu of EGFRvIII-expressing GBM cells is likely to influence the EGFRvIII-Met interaction and resistance to treatment, and highlights a novel antagonistic interaction between EGFRwt and EGFRvIII in glioma cells.

摘要

表皮生长因子受体(EGFR)vIII是胶质母细胞瘤(GBM)中最常见的EGFR突变体。EGFRvIII不结合配体,具有高度致癌性,通常与野生型EGFR(EGFRwt)共表达。EGFRvIII激活Met,而Met有助于EGFRvIII介导的致癌性和耐药性。在此,我们报告添加表皮生长因子(EGF)会导致胶质瘤细胞中EGFRvIII驱动的Met磷酸化迅速丧失。Met与EGFRvIII在一个物理复合物中相关联。添加EGF会导致EGFRvIII-Met复合物解离,同时Met磷酸化丧失。与Met激活的消除一致,添加EGF会导致对EGFRvIII介导的化疗耐药性的抑制。因此,我们的研究表明,表达EGFRvIII的GBM细胞环境中的配体可能会影响EGFRvIII-Met相互作用和耐药性,并突出了胶质瘤细胞中EGFRwt和EGFRvIII之间一种新的拮抗相互作用。

相似文献

1
EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma.
Oncogene. 2015 Jan 2;34(1):129-134. doi: 10.1038/onc.2013.534. Epub 2013 Dec 23.
2
An EGFR wild type-EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII.
Oncogene. 2014 Aug 14;33(33):4253-64. doi: 10.1038/onc.2013.400. Epub 2013 Sep 30.
3
The Role of EGFR-Met Interactions in the Pathogenesis of Glioblastoma and Resistance to Treatment.
Curr Cancer Drug Targets. 2017;17(3):297-302. doi: 10.2174/1568009616666161215162515.
5
Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo.
Cancer Med. 2016 Mar;5(3):486-99. doi: 10.1002/cam4.614. Epub 2016 Jan 18.
6
The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases.
Neoplasia. 2009 May;11(5):448-58, 2 p following 458. doi: 10.1593/neo.09230.
7
EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts.
Mol Cancer Ther. 2009 Jul;8(7):1751-60. doi: 10.1158/1535-7163.MCT-09-0188. Epub 2009 Jul 7.
8
Opposing effect of EGFRWT on EGFRvIII-mediated NF-κB activation with RIP1 as a cell death switch.
Cell Rep. 2013 Aug 29;4(4):764-75. doi: 10.1016/j.celrep.2013.07.025. Epub 2013 Aug 22.
10
Crizotinib and erlotinib inhibits growth of c-Met/EGFRvIII primary human glioblastoma xenografts.
Clin Neurol Neurosurg. 2018 Aug;171:26-33. doi: 10.1016/j.clineuro.2018.02.041. Epub 2018 Mar 9.

引用本文的文献

1
Polymeric Nanoparticle-Mediated Photodynamic Therapy: A Synergistic Approach for Glioblastoma Treatment.
Pharmaceuticals (Basel). 2025 Jul 18;18(7):1057. doi: 10.3390/ph18071057.
2
LncRNA APTR amplification serves as a potential glioma biomarker and promotes glioma progression via miR-6734-5p/ TCF7/LEF1 axis.
Noncoding RNA Res. 2025 Feb 22;12:42-55. doi: 10.1016/j.ncrna.2025.02.007. eCollection 2025 Jun.
3
EGFRvIII Confers Sensitivity to Saracatinib in a STAT5-Dependent Manner in Glioblastoma.
Int J Mol Sci. 2024 Jun 6;25(11):6279. doi: 10.3390/ijms25116279.
4
Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update.
Int J Mol Sci. 2021 May 5;22(9):4899. doi: 10.3390/ijms22094899.
6
ERK-mediated negative feedback regulation of oncogenic EGFRvIII in glioblastoma cells.
Oncol Lett. 2020 Sep;20(3):2477-2482. doi: 10.3892/ol.2020.11760. Epub 2020 Jun 19.
8
EGFR-vIII downregulated H2AZK4/7AC though the PI3K/AKT-HDAC2 axis to regulate cell cycle progression.
Clin Transl Med. 2020 Jan 28;9(1):10. doi: 10.1186/s40169-020-0260-7.
9
Heterogeneous , , , and Gene Expression Profiles in Primary GBM: No Association with Patient Survival.
Cancers (Basel). 2020 Jan 17;12(1):231. doi: 10.3390/cancers12010231.
10
Functional RNAi Screens Define Distinct Protein Kinase Vulnerabilities in EGFR-Dependent HNSCC Cell Lines.
Mol Pharmacol. 2019 Dec;96(6):862-870. doi: 10.1124/mol.119.117804. Epub 2019 Sep 25.

本文引用的文献

1
An EGFR wild type-EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII.
Oncogene. 2014 Aug 14;33(33):4253-64. doi: 10.1038/onc.2013.400. Epub 2013 Sep 30.
2
Opposing effect of EGFRWT on EGFRvIII-mediated NF-κB activation with RIP1 as a cell death switch.
Cell Rep. 2013 Aug 29;4(4):764-75. doi: 10.1016/j.celrep.2013.07.025. Epub 2013 Aug 22.
3
Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition.
Clin Cancer Res. 2013 Mar 15;19(6):1433-44. doi: 10.1158/1078-0432.CCR-12-2832. Epub 2013 Feb 5.
4
6
Forced dimerization increases the activity of ΔEGFR/EGFRvIII and enhances its oncogenicity.
Mol Cancer Res. 2011 Sep;9(9):1199-208. doi: 10.1158/1541-7786.MCR-11-0229. Epub 2011 Jul 20.
7
HGF-independent potentiation of EGFR action by c-Met.
Oncogene. 2011 Aug 18;30(33):3625-35. doi: 10.1038/onc.2011.84. Epub 2011 Mar 21.
8
Analysis of phosphotyrosine signaling in glioblastoma identifies STAT5 as a novel downstream target of ΔEGFR.
J Proteome Res. 2011 Mar 4;10(3):1343-52. doi: 10.1021/pr101075e. Epub 2011 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验