Suppr超能文献

音乐家下行运动通路的差异适应性

Differential adaptation of descending motor tracts in musicians.

作者信息

Rüber Theodor, Lindenberg Robert, Schlaug Gottfried

机构信息

Department of Neurology, Neuroimaging and Stroke Recovery Laboratories, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA Department of Epileptology, Bonn University Hospital, Bonn, Germany and.

Department of Neurology, Neuroimaging and Stroke Recovery Laboratories, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA Department of Neurology, Charité University Medicine, Berlin, Germany.

出版信息

Cereb Cortex. 2015 Jun;25(6):1490-8. doi: 10.1093/cercor/bht331. Epub 2013 Dec 19.

Abstract

Between-group comparisons of musicians and nonmusicians have revealed structural brain differences and also functional differences in motor performance. In this study, we aimed to examine the relation between white matter microstructure and high-level motor skills by contrasting 2 groups of musicians with different instrument-specific motor requirements. We used diffusion tensor imaging to compare diffusivity measures of different corticospinal motor tracts of 10 keyboard players, 10 string players, and 10 nonmusicians. Additionally, the maximal tapping rates of their left and right index fingers were determined. When compared with nonmusicians, fractional anisotropy (FA) values of right-hemispheric motor tracts were significantly higher in both musician groups, whereas left-hemispheric motor tracts showed significantly higher FA values only in the keyboard players. Voxel-wise FA analysis found a group effect in white matter underlying the right motor cortex. Diffusivity measures of fibers originating in the primary motor cortex correlated with the maximal tapping rate of the contralateral index finger across all groups. The observed between-group diffusivity differences might represent an adaptation to the specific motor demands of the respective musical instrument. This is supported further by finding correlations between diffusivity measures and maximal tapping rates.

摘要

音乐家与非音乐家之间的组间比较揭示了大脑结构差异以及运动表现方面的功能差异。在本研究中,我们旨在通过对比两组具有不同乐器特定运动要求的音乐家,来检验白质微观结构与高级运动技能之间的关系。我们使用扩散张量成像来比较10名键盘乐器演奏者、10名弦乐器演奏者和10名非音乐家不同皮质脊髓运动束的扩散率测量值。此外,还测定了他们左右食指的最大敲击速率。与非音乐家相比,两个音乐家组右半球运动束的分数各向异性(FA)值均显著更高,而左半球运动束仅在键盘乐器演奏者中显示出显著更高的FA值。基于体素的FA分析发现右运动皮层下白质存在组效应。在所有组中,源自初级运动皮层的纤维的扩散率测量值与对侧食指的最大敲击速率相关。观察到的组间扩散率差异可能代表了对各自乐器特定运动需求的一种适应。扩散率测量值与最大敲击速率之间的相关性进一步支持了这一点。

相似文献

1
Differential adaptation of descending motor tracts in musicians.
Cereb Cortex. 2015 Jun;25(6):1490-8. doi: 10.1093/cercor/bht331. Epub 2013 Dec 19.
2
The descending motor tracts are different in dancers and musicians.
Brain Struct Funct. 2019 Dec;224(9):3229-3246. doi: 10.1007/s00429-019-01963-0. Epub 2019 Oct 16.
3
White matter microstructure correlates of age, sex, handedness and motor ability in a population-based sample of 3031 school-age children.
Neuroimage. 2021 Feb 15;227:117643. doi: 10.1016/j.neuroimage.2020.117643. Epub 2020 Dec 15.
4
Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.
Neuroimage. 2014 Apr 15;90:107-16. doi: 10.1016/j.neuroimage.2013.12.025. Epub 2013 Dec 25.
5
White matter alterations and their associations with motor function in young adults born preterm with very low birth weight.
Neuroimage Clin. 2017 Oct 4;17:241-250. doi: 10.1016/j.nicl.2017.10.006. eCollection 2018.
8
Structural hemispheric asymmetries in the human precentral gyrus hand representation.
Neuroscience. 2012 May 17;210:211-21. doi: 10.1016/j.neuroscience.2012.02.044. Epub 2012 Mar 8.
9
Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke.
Neuroimage Clin. 2015 Mar 14;7:771-81. doi: 10.1016/j.nicl.2015.03.007. eCollection 2015.
10
Brain microstructure is related to math ability in children with fetal alcohol spectrum disorder.
Alcohol Clin Exp Res. 2010 Feb;34(2):354-63. doi: 10.1111/j.1530-0277.2009.01097.x. Epub 2009 Nov 20.

引用本文的文献

1
Choir singing is associated with enhanced structural connectivity across the adult lifespan.
Hum Brain Mapp. 2024 May;45(7):e26705. doi: 10.1002/hbm.26705.
2
Tapping Performance of Professional and Amateur Darbuka Players.
Front Psychol. 2022 Jun 30;13:861821. doi: 10.3389/fpsyg.2022.861821. eCollection 2022.
3
An ALE meta-analytic review of musical expertise.
Sci Rep. 2022 Jul 11;12(1):11726. doi: 10.1038/s41598-022-14959-4.
4
Cortical thickness of primary motor and vestibular brain regions predicts recovery from fall and balance directly after spaceflight.
Brain Struct Funct. 2022 Jul;227(6):2073-2086. doi: 10.1007/s00429-022-02492-z. Epub 2022 Apr 25.
5
Sex Differences are Reflected in Microstructural White Matter Alterations of Musical Sophistication: A Diffusion MRI Study.
Front Neurosci. 2021 Jul 22;15:622053. doi: 10.3389/fnins.2021.622053. eCollection 2021.
6
Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior.
Neuroimage. 2021 Aug 15;237:118144. doi: 10.1016/j.neuroimage.2021.118144. Epub 2021 May 12.
8
Musical Expertise Shapes Functional and Structural Brain Networks Independent of Absolute Pitch Ability.
J Neurosci. 2021 Mar 17;41(11):2496-2511. doi: 10.1523/JNEUROSCI.1985-20.2020. Epub 2021 Jan 25.
10
Cognitive and White-Matter Compartment Models Reveal Selective Relations between Corticospinal Tract Microstructure and Simple Reaction Time.
J Neurosci. 2019 Jul 24;39(30):5910-5921. doi: 10.1523/JNEUROSCI.2954-18.2019. Epub 2019 May 23.

本文引用的文献

1
Musical training as a framework for brain plasticity: behavior, function, and structure.
Neuron. 2012 Nov 8;76(3):486-502. doi: 10.1016/j.neuron.2012.10.011.
2
Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis.
BMC Neurosci. 2012 Nov 8;13:141. doi: 10.1186/1471-2202-13-141.
3
Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke.
Neurology. 2012 Aug 7;79(6):515-22. doi: 10.1212/WNL.0b013e31826356e8. Epub 2012 Jul 25.
4
A new early and automated MRI-based predictor of motor improvement after stroke.
Neurology. 2012 Jul 3;79(1):39-46. doi: 10.1212/WNL.0b013e31825f25e7. Epub 2012 Jun 20.
5
Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI.
PLoS One. 2012;7(5):e36568. doi: 10.1371/journal.pone.0036568. Epub 2012 May 7.
6
When right is all that is left: plasticity of right-hemisphere tracts in a young aphasic patient.
Ann N Y Acad Sci. 2012 Apr;1252:237-45. doi: 10.1111/j.1749-6632.2012.06454.x.
7
Plasticity in gray and white: neuroimaging changes in brain structure during learning.
Nat Neurosci. 2012 Mar 18;15(4):528-36. doi: 10.1038/nn.3045.
8
Effects of limb immobilization on brain plasticity.
Neurology. 2012 Jan 17;78(3):182-8. doi: 10.1212/WNL.0b013e31823fcd9c.
9
Neuroplasticity subserving motor skill learning.
Neuron. 2011 Nov 3;72(3):443-54. doi: 10.1016/j.neuron.2011.10.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验