Suppr超能文献

基于集合经验模态分解的自适应算法估计诱发电活动血流动力学响应及其在双通道近红外光谱(fNIRS)中的应用。

Evoked hemodynamic response estimation using ensemble empirical mode decomposition based adaptive algorithm applied to dual channel functional near infrared spectroscopy (fNIRS).

机构信息

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

出版信息

J Neurosci Methods. 2014 Mar 15;224:13-25. doi: 10.1016/j.jneumeth.2013.12.007. Epub 2013 Dec 21.

Abstract

BACKGROUND

The quality of the functional near infrared spectroscopy (fNIRS) recordings is highly degraded by the presence of physiological interferences. It is crucial to efficiently separate the evoked hemodynamic responses (EHRs) from other background hemodynamic activities prior to any further processing.

NEW METHOD

This paper presents a novel algorithm for physiological interferences reduction from the dual channel fNIRS measurements using ensemble empirical mode decomposition (EEMD) technique. The proposed algorithm is comprised of two main steps: (1) decomposing reference signal into its constituents called intrinsic mode functions (IMFs) and (2) adaptively defining appropriate weights of the corresponding IMFs to estimate the proportion of physiological interference in standard channel measurement.

RESULTS

Performance of the proposed algorithm was evaluated using both synthetic and semi-real brain hemodynamic data based on four parameters of relative mean squared error (rMSE), Pearson's correlation coefficient (R(2)), percentage estimation error of peak amplitude (EPA) and peak latency (EL).

COMPARISON WITH EXISTING METHODS

Results obtained from synthetic data revealed that both the EEMD based normalized least mean squares (EEMD-NLMS) and EEMD based recursive least squares (EEMD-RLS) methods could reduce the average rMSE by at least 34% and 49%, respectively, when compared with widely used methods: block averaging, band-pass filtering and principal and/or independent component analysis. Furthermore, the two proposed methods outperform the regression method in reducing rMSE by at least 21% and 35% respectively when applied to semi-real data.

CONCLUSIONS

An effective algorithm for estimating the EHRs from raw fNIRS data was proposed in which no assumption about the amplitude, shape and duration of the responses is considered.

摘要

背景

由于生理干扰的存在,功能近红外光谱(fNIRS)记录的质量严重下降。在进行任何进一步的处理之前,必须有效地将诱发的血液动力学响应(EHR)与其他背景血液动力学活动区分开来。

新方法

本文提出了一种使用集合经验模态分解(EEMD)技术从双通道 fNIRS 测量中减少生理干扰的新算法。该算法由两个主要步骤组成:(1)将参考信号分解为其组成部分,称为固有模态函数(IMF);(2)自适应地定义相应 IMF 的适当权重,以估计标准通道测量中生理干扰的比例。

结果

使用基于四个参数的合成和半真实脑血液动力学数据评估了所提出算法的性能,这四个参数分别是相对均方误差(rMSE)、皮尔逊相关系数(R(2))、峰值幅度(EPA)和峰值潜伏期(EL)的估计误差百分比。

与现有方法的比较

从合成数据中获得的结果表明,EEMD 归一化最小均方(EEMD-NLMS)和 EEMD 递归最小二乘(EEMD-RLS)方法与广泛使用的方法(块平均、带通滤波和主成分和/或独立成分分析)相比,平均 rMSE 可降低至少 34%和 49%。此外,当应用于半真实数据时,这两种方法在降低 rMSE 方面分别优于回归方法至少 21%和 35%。

结论

提出了一种从原始 fNIRS 数据中估计 EHR 的有效算法,该算法不考虑响应的幅度、形状和持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验