Suppr超能文献

长期混沌及其在水星、热木星和行星系统结构中的应用。

Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

作者信息

Lithwick Yoram, Wu Yanqin

机构信息

Department of Physics and Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208; and

Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON, Canada M5S 3H4.

出版信息

Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12610-5. doi: 10.1073/pnas.1308261110. Epub 2013 Dec 23.

Abstract

In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

摘要

在太阳系内部,行星的轨道呈混沌演化,主要由长期混沌驱动。水星具有特别混沌的轨道,在几十亿年内有脱离太阳系的危险。正如长期混沌如今正在重塑太阳系一样,它在过去可能也有助于太阳系的形成。我们认为,太阳系外行星系统在很大程度上也是由长期混沌所塑造的。一颗热木星可能是一个类似于太阳系的长期混沌行星系统的最终状态。然而,对于热木星而言,最内侧的行星是木星(而非水星)大小,并且当其被恒星潮汐俘获时,其混沌演化便终止了。在本论文中,我们回顾了我们最近的工作,该工作阐明了长期混沌的物理原理,并将其应用于水星和热木星。我们还展示了将由此产生的热木星倾角与观测结果进行比较的结果。

相似文献

1
Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12610-5. doi: 10.1073/pnas.1308261110. Epub 2013 Dec 23.
2
Hot Jupiters from secular planet-planet interactions.
Nature. 2011 May 12;473(7346):187-9. doi: 10.1038/nature10076.
3
The changing phases of extrasolar planet CoRoT-1b.
Nature. 2009 May 28;459(7246):543-5. doi: 10.1038/nature08045.
4
Alignment of the stellar spin with the orbits of a three-planet system.
Nature. 2012 Jul 25;487(7408):449-53. doi: 10.1038/nature11301.
5
Kepler constraints on planets near hot Jupiters.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):7982-7. doi: 10.1073/pnas.1120970109. Epub 2012 May 7.
6
An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b.
Nature. 2009 Aug 27;460(7259):1098-100. doi: 10.1038/nature08245.
7
Extrasolar planets.
Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12405-6. doi: 10.1073/pnas.210381997.
8
The evolution of hot Jupiters revealed by the age distribution of their host stars.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2304179120. doi: 10.1073/pnas.2304179120. Epub 2023 Oct 30.
9
Dynamical habitability of planetary systems.
Astrobiology. 2010 Jan-Feb;10(1):33-43. doi: 10.1089/ast.2009.0379.
10
Looking for planetary moons in the spectra of distant Jupiters.
Astrobiology. 2004 Fall;4(3):400-3. doi: 10.1089/ast.2004.4.400.

引用本文的文献

2
Exoplanets. Introduction.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12599-600. doi: 10.1073/pnas.1409934111.

本文引用的文献

1
Kepler constraints on planets near hot Jupiters.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):7982-7. doi: 10.1073/pnas.1120970109. Epub 2012 May 7.
2
Hot Jupiters from secular planet-planet interactions.
Nature. 2011 May 12;473(7346):187-9. doi: 10.1038/nature10076.
3
Existence of collisional trajectories of Mercury, Mars and Venus with the Earth.
Nature. 2009 Jun 11;459(7248):817-9. doi: 10.1038/nature08096.
4
Chaotic evolution of the solar system.
Science. 1992 Jul 3;257(5066):56-62. doi: 10.1126/science.257.5066.56.
5
Numerical evidence that the motion of pluto is chaotic.
Science. 1988 Jul 22;241(4864):433-7. doi: 10.1126/science.241.4864.433.
6
The use of transit timing to detect terrestrial-mass extrasolar planets.
Science. 2005 Feb 25;307(5713):1288-91. doi: 10.1126/science.1107822.
7
The origin of chaos in the outer solar system.
Science. 1999 Mar 19;283(5409):1877-81. doi: 10.1126/science.283.5409.1877.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验