Departments of Chemistry and Materials Science and Engineering, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States.
J Am Chem Soc. 2014 Jan 22;136(3):1034-46. doi: 10.1021/ja410647c. Epub 2014 Jan 8.
Characterization of the redox properties of TiO2 interfaces sensitized to visible light by a series of cyclometalated ruthenium polypyridyl compounds containing both a terpyridyl ligand with three carboxylic acid/carboxylate or methyl ester groups for surface binding and a tridentate cyclometalated ligand with a conjugated triarylamine (NAr3) donor group is described. Spectroelectrochemical studies revealed non-Nernstian behavior with nonideality factors of 1.37 ± 0.08 for the Ru(III/II) couple and 1.15 ± 0.09 for the NAr3(•+/0) couple. Pulsed light excitation of the sensitized thin films resulted in rapid excited-state injection (k(inj) > 10(8) s(-1)) and in some cases hole transfer to NAr3 [TiO2(e(-))/Ru(III)-NAr3 → TiO2(e(-))/Ru(II)-NAr3(•+)]. The rate constants for charge recombination [TiO2(e(-))/Ru(III)-NAr3 → TiO2/Ru(II)-NAr3 or TiO2(e(-))/Ru(II)-NAr3(•+) → TiO2/Ru(II)-NAr3] were insensitive to the identity of the cyclometalated compound, while the open-circuit photovoltage was significantly larger for the compound with the highest quantum yield for hole transfer, behavior attributed to a larger dipole moment change (Δμ = 7.7 D). Visible-light excitation under conditions where the Ru(III) centers were oxidized resulted in injection into TiO2 [TiO2/Ru(III)-NAr3 + hν → TiO2(e(-))/Ru(III)-NAr3(•+)] followed by rapid back interfacial electron transfer to another oxidized compound that had not undergone excited-state injection [TiO2(e(-))/Ru(III)-NAr3 → TiO2/Ru(II)-NAr3]. The net effect was the photogeneration of equal numbers of fully reduced and fully oxidized compounds. Lateral intermolecular hole hopping (TiO2/Ru(II)-NAr3 + TiO2/Ru(III)-NAr3(•+) → 2TiO2/Ru(III)-NAr3) was observed spectroscopically and was modeled by Monte Carlo simulations that revealed an effective hole hopping rate of (130 ns)(-1).
描述了一系列含有三羧酸/羧酸酯或甲酯基团的三联吡啶配体用于表面结合和具有共轭三芳基胺(NAr3)供体基团的三齿环金属化配体的可见光敏化的 TiO2 界面的氧化还原性质的表征。循环伏安法研究表明,Ru(III/II) 对和 NAr3(•+/0) 对的非理想因子分别为 1.37 ± 0.08 和 1.15 ± 0.09,非 Nernst 行为。敏化薄膜的脉冲光激发导致快速激发态注入(k(inj) > 10(8) s(-1)),并且在某些情况下空穴转移到 NAr3 [TiO2(e(-))/Ru(III)-NAr3 → TiO2(e(-))/Ru(II)-NAr3(•+)。电荷复合的速率常数 [TiO2(e(-))/Ru(III)-NAr3 → TiO2/Ru(II)-NAr3 或 TiO2(e(-))/Ru(II)-NAr3(•+) → TiO2/Ru(II)-NAr3]对环金属化化合物的身份不敏感,而开路光电压对于空穴转移量子产率最高的化合物显著更大,这种行为归因于更大的偶极矩变化(Δμ = 7.7 D)。在 Ru(III) 中心被氧化的条件下,可见光激发导致注入 TiO2 [TiO2/Ru(III)-NAr3 + hν → TiO2(e(-))/Ru(III)-NAr3(•+)],然后快速反向界面电子转移到另一个未经历激发态注入的氧化化合物 [TiO2(e(-))/Ru(III)-NAr3 → TiO2/Ru(II)-NAr3]。净效应是完全还原和完全氧化化合物的光生成数相等。通过光谱观察到横向分子间空穴跳跃(TiO2/Ru(II)-NAr3 + TiO2/Ru(III)-NAr3(•+) → 2TiO2/Ru(III)-NAr3),并用蒙特卡罗模拟进行了建模,结果表明有效空穴跳跃速率为 (130 ns)(-1)。