Rodríguez J J, Noristani H N, Verkhratsky A
IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain,
Brain Struct Funct. 2015 Mar;220(2):941-53. doi: 10.1007/s00429-013-0693-5. Epub 2013 Dec 29.
Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.
阿尔茨海默病(AD)是一种无法治愈的神经退行性疾病,会损害记忆力。增加身体/认知活动通过促进神经元和神经胶质反应来降低痴呆风险。尽管很少有研究调查野生型啮齿动物在受到身体/认知刺激后的小胶质细胞反应,但环境诱导的小胶质细胞对AD反应的变化一直被忽视。我们研究了跑步(RUN)和丰富环境(ENR)对三重转基因(3×Tg-AD)小鼠模型中小胶质细胞的数值密度(N v,#/mm³)和形态的影响,该模型紧密模拟了人类的AD病理学。我们使用免疫组织化学方法,通过测量小胶质细胞的整体细胞表面、体积和胞体体积来表征其结构域。与非转基因(非Tg)动物相比,饲养在标准对照(STD)环境中的3×Tg-AD小鼠在12个月时海马CA1分子层(S.Mol)中的小胶质细胞N v显著增加(11.7%)。暴露于RUN和ENR组合环境可防止3×Tg-AD小鼠中小胶质细胞N v增加,并将小胶质细胞数量降低至非Tg对照水平。有趣的是,与饲养在STD环境中的3×Tg-AD小鼠相比,仅饲养在ENR环境中的3×Tg-AD小鼠海马CA1亚区(降低9.3%)、海马伞(降低11.5%)和S.Mol(降低7.6%)中的小胶质细胞N v显著降低。形态学分析显示,与STD环境相比,饲养在RUN(而非ENR)环境中的3×Tg-AD小鼠由于小胶质细胞表面、体积和胞体体积显著增加(分别为61%、78%和41%)而出现小胶质细胞肥大。这些结果表明,暴露于RUN和ENR环境对小胶质细胞密度和与激活相关的小胶质细胞形态变化具有不同影响。