Duri Simon, Tran Chieu D
Department of Chemistry, Marquette University , P.O. Box 1881 Milwaukee, Wisconsin 53201-1881, United States.
Langmuir. 2014 Jan 21;30(2):642-50. doi: 10.1021/la404003t. Epub 2014 Jan 7.
A composite containing cellulose (CEL) and chitosan (CS) synthesized by a simple and recyclable method by using butylmethylimmidazolium chloride, an ionic liquid, was found to exhibit remarkable enantiomeric selectivity toward the adsorption of amino acids. The highest adsorption capacity and enantiomeric selectivity are exhibited by 100% CS. A racemic amino acid can be enantiomerically resolved by 100% CS in about 96-120 h. Interestingly, adsorption by 50:50 CEL/CS is more similar to that by 100% CS than to 100% CEL. Specifically, whereas 100% CEL has the lowest adsorption capacity and enantiomeric selectivity, 50:50 CEL/CS has sufficient enantiomeric selectivity to enable it to be used for chiral resolution. This is significant because in spite of its high enantiomeric selectivity 100% CS cannot practically be used because it has relatively poor mechanical properties and undergoes extensive swelling. Adding 50% CEL to CS substantially improves the mechanical properties and reduces its swelling while it retains sufficient enantiomeric selectivity to enable it to be used for routine chiral separations. The kinetic results indicate that the enantiomerically selective adsorption is due not to the initial surface adsorption but rather to the subsequent stage in which the adsorbate molecules diffuse into the pores within the particles of the composites and consequently are adsorbed by the interior of each particle. The strong intermolecular and intramolecular hydrogen bond network in CEL enables it to adopt a very dense structure that makes it difficult for adsorbate molecules to diffuse into its interior, thereby leading to low enantiomeric selectivity. Compared to hydroxy groups, amino groups cannot form strong hydrogen bonds. The hydrogen bond network in CS is not as extensive as in CEL, and its inner structure is relatively less dense than that of CEL. Adsorbate molecules can, therefore, diffuse from the outer surface to its inner structure relatively more easily than in CEL, thereby leading to higher enantiomeric selectivity for 100% CS.
通过使用离子液体氯化丁基甲基咪唑鎓,采用一种简单且可回收的方法合成了一种包含纤维素(CEL)和壳聚糖(CS)的复合材料,该复合材料对氨基酸的吸附表现出显著的对映体选择性。100%的CS展现出最高的吸附容量和对映体选择性。外消旋氨基酸可以在约96 - 120小时内被100%的CS进行对映体拆分。有趣的是,50:50的CEL/CS的吸附情况与100%的CS更为相似,而与100%的CEL不同。具体而言,虽然100%的CEL具有最低的吸附容量和对映体选择性,但50:50的CEL/CS具有足够的对映体选择性,使其能够用于手性拆分。这很重要,因为尽管100%的CS具有高对映体选择性,但由于其机械性能相对较差且会发生大量溶胀,实际上无法使用。向CS中添加50%的CEL可显著改善其机械性能并减少溶胀,同时保留足够的对映体选择性以用于常规手性分离。动力学结果表明,对映体选择性吸附并非由于初始的表面吸附,而是由于随后的阶段,即被吸附物分子扩散到复合材料颗粒内部的孔隙中并因此被每个颗粒内部吸附。CEL中强大的分子间和分子内氢键网络使其能够形成非常致密的结构,这使得被吸附物分子难以扩散到其内部,从而导致低对映体选择性。与羟基相比,氨基不能形成强氢键。CS中的氢键网络不如CEL中广泛,其内部结构相对不如CEL致密。因此,与在CEL中相比,被吸附物分子可以相对更容易地从外表面扩散到其内部结构,从而导致100%的CS具有更高的对映体选择性。