Suppr超能文献

相似文献

1
Epithelial transport during septic acute kidney injury.
Nephrol Dial Transplant. 2014 Jul;29(7):1312-9. doi: 10.1093/ndt/gft503. Epub 2013 Dec 29.
2
The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F788-F797. doi: 10.1152/ajprenal.00051.2017. Epub 2017 Nov 8.
3
Septic acute kidney injury: the glomerular arterioles.
Contrib Nephrol. 2011;174:98-107. doi: 10.1159/000329246. Epub 2011 Sep 9.
4
Sepsis-associated AKI: epithelial cell dysfunction.
Semin Nephrol. 2015 Jan;35(1):85-95. doi: 10.1016/j.semnephrol.2015.01.009.
5
Mitochondrial function and disturbances in the septic kidney.
Semin Nephrol. 2015 Jan;35(1):108-19. doi: 10.1016/j.semnephrol.2015.01.011.
6
8
Soluble CD25 is increased in patients with sepsis-induced acute kidney injury.
Nephrology (Carlton). 2014 Jun;19(6):318-24. doi: 10.1111/nep.12230.
9
The role of tubuloglomerular feedback in the pathogenesis of acute kidney injury.
Contrib Nephrol. 2011;174:12-21. doi: 10.1159/000329229. Epub 2011 Sep 9.
10
Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, From Injury to Recovery.
Front Immunol. 2021 Mar 1;12:606622. doi: 10.3389/fimmu.2021.606622. eCollection 2021.

引用本文的文献

1
Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness.
Life (Basel). 2024 Dec 20;14(12):1688. doi: 10.3390/life14121688.
2
Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment.
Cells. 2023 Oct 15;12(20):2455. doi: 10.3390/cells12202455.
6
Sensing of tubular flow and renal electrolyte transport.
Nat Rev Nephrol. 2020 Jun;16(6):337-351. doi: 10.1038/s41581-020-0259-8. Epub 2020 Mar 3.
8
Mechanisms of Scarring in Focal Segmental Glomerulosclerosis.
J Histochem Cytochem. 2019 Sep;67(9):623-632. doi: 10.1369/0022155419850170. Epub 2019 May 22.
9
Deregulated renal magnesium transport during lipopolysaccharide-induced acute kidney injury in mice.
Pflugers Arch. 2019 Apr;471(4):619-631. doi: 10.1007/s00424-019-02261-8. Epub 2019 Feb 6.
10
"I don't get no respect": the role of chloride in acute kidney injury.
Am J Physiol Renal Physiol. 2019 Mar 1;316(3):F587-F605. doi: 10.1152/ajprenal.00130.2018. Epub 2018 Dec 12.

本文引用的文献

1
Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.
J Clin Invest. 2013 Feb;123(2):657-65. doi: 10.1172/JCI61110. Epub 2013 Jan 25.
3
Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1.
FASEB J. 2013 Jan;27(1):3-12. doi: 10.1096/fj.12-218230. Epub 2012 Sep 25.
4
Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule.
Am J Physiol Renal Physiol. 2012 Nov 15;303(10):F1399-408. doi: 10.1152/ajprenal.00385.2011. Epub 2012 Sep 5.
5
SGK regulation of renal sodium transport.
Curr Opin Nephrol Hypertens. 2012 Sep;21(5):534-40. doi: 10.1097/MNH.0b013e32835571be.
7
Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction.
Am J Physiol Cell Physiol. 2012 Jun 1;302(11):C1569-87. doi: 10.1152/ajpcell.00017.2012. Epub 2012 Mar 28.
8
Basolateral LPS inhibits NHE3 and HCOFormula absorption through TLR4/MyD88-dependent ERK activation in medullary thick ascending limb.
Am J Physiol Cell Physiol. 2011 Dec;301(6):C1296-306. doi: 10.1152/ajpcell.00237.2011. Epub 2011 Aug 31.
9
Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway.
J Am Soc Nephrol. 2011 Sep;22(9):1707-19. doi: 10.1681/ASN.2011020132. Epub 2011 Aug 18.
10
The biochemical effects of restricting chloride-rich fluids in intensive care.
Crit Care Med. 2011 Nov;39(11):2419-24. doi: 10.1097/CCM.0b013e31822571e5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验