Suppr超能文献

一种铁调素启动子调控的多尺度模型揭示了控制全身铁稳态的因素。

A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

作者信息

Casanovas Guillem, Banerji Anashua, d'Alessio Flavia, Muckenthaler Martina U, Legewie Stefan

机构信息

Department of Pediatric Oncology, Hematology and Immunology, University Hospital of Heidelberg, Heidelberg, Germany ; Molecular Medicine Partnership Unit, Heidelberg, Germany ; European Molecular Biology Laboratory, Heidelberg, Germany.

Institute of Molecular Biology (IMB), Mainz, Germany ; BioQuant, Heidelberg, Germany.

出版信息

PLoS Comput Biol. 2014 Jan;10(1):e1003421. doi: 10.1371/journal.pcbi.1003421. Epub 2014 Jan 2.

Abstract

Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

摘要

全身铁稳态涉及一个负反馈回路,其中肽激素铁调素的表达水平取决于并控制血液中的铁水平。铁调素的表达受骨形态发生蛋白6(BMP6)/SMAD和白细胞介素6(IL6)/信号转导和转录激活因子(STAT)信号级联调节。这两条通路中任何一条的失调都会导致与铁相关的疾病,如血色素沉着症或炎症性贫血。我们定量分析了BMP6和IL6如何控制铁调素的表达。在共刺激条件下测量转录因子(TF)磷酸化和报告基因表达,并通过诱变扰动启动子。使用数学模型,我们系统地分析了转录因子协同和竞争性启动子调控的潜在机制,并通过实验验证了模型预测。我们的结果表明,铁调素的交叉调节主要通过转录因子与启动子的组合结合发生,而信号串扰并不显著。我们发现两个BMP反应元件的存在增强了启动子对铁感应BMP信号轴反应的陡度,这在体内促进了铁稳态。IL6共刺激降低了启动子对BMP信号的敏感性,因为SMAD和STAT转录因子竞争将RNA聚合酶招募到转录起始位点。这可能解释了为什么炎症信号会扰乱炎症性贫血中的铁稳态。综上所述,我们的结果揭示了铁稳态回路为何对与疾病相关的扰动敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9545/3879105/2be6a5c54d81/pcbi.1003421.g001.jpg

相似文献

1
A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.
PLoS Comput Biol. 2014 Jan;10(1):e1003421. doi: 10.1371/journal.pcbi.1003421. Epub 2014 Jan 2.
4
Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis.
Blood. 2010 May 6;115(18):3817-26. doi: 10.1182/blood-2009-05-224808. Epub 2010 Mar 3.
5
Hepcidin and the BMP-SMAD pathway: An unexpected liaison.
Vitam Horm. 2019;110:71-99. doi: 10.1016/bs.vh.2019.01.004. Epub 2019 Feb 10.
6
Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice.
J Biol Chem. 2019 Sep 6;294(36):13292-13303. doi: 10.1074/jbc.RA118.007213. Epub 2019 Jul 17.
8
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice.
Blood. 2017 Jan 26;129(4):405-414. doi: 10.1182/blood-2016-06-721571. Epub 2016 Nov 18.
9
SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression.
Blood. 2010 Apr 1;115(13):2657-65. doi: 10.1182/blood-2009-09-238105. Epub 2009 Dec 29.
10
Endofin, a novel BMP-SMAD regulator of the iron-regulatory hormone, hepcidin.
Sci Rep. 2015 Sep 11;5:13986. doi: 10.1038/srep13986.

引用本文的文献

2
Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway.
Methods Mol Biol. 2023;2634:215-251. doi: 10.1007/978-1-0716-3008-2_10.
4
Inflammation Mediated Hepcidin-Ferroportin Pathway and Its Therapeutic Window in Breast Cancer.
Breast Cancer (Dove Med Press). 2020 Oct 20;12:165-180. doi: 10.2147/BCTT.S276404. eCollection 2020.
5
Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene.
Biophys J. 2020 Apr 21;118(8):2027-2041. doi: 10.1016/j.bpj.2020.02.022. Epub 2020 Mar 3.
6
Targeting the hepcidin-ferroportin pathway in anaemia of chronic kidney disease.
Br J Clin Pharmacol. 2019 May;85(5):935-948. doi: 10.1111/bcp.13877. Epub 2019 Mar 4.
7
Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.
PLoS Comput Biol. 2017 Jan 9;13(1):e1005322. doi: 10.1371/journal.pcbi.1005322. eCollection 2017 Jan.
8
Hepcidin regulation in the anemia of inflammation.
Curr Opin Hematol. 2016 May;23(3):189-97. doi: 10.1097/MOH.0000000000000236.
9
Signal integration by the CYP1A1 promoter--a quantitative study.
Nucleic Acids Res. 2015 Jun 23;43(11):5318-30. doi: 10.1093/nar/gkv423. Epub 2015 May 1.

本文引用的文献

1
Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models.
Mol Biosyst. 2013 Jul;9(7):1576-83. doi: 10.1039/c3mb25489e. Epub 2013 Mar 25.
2
Toward a unified physical model of nucleosome patterns flanking transcription start sites.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5719-24. doi: 10.1073/pnas.1214048110. Epub 2013 Mar 18.
3
Robustness of signal transduction pathways.
Cell Mol Life Sci. 2013 Jul;70(13):2259-69. doi: 10.1007/s00018-012-1162-7. Epub 2012 Sep 25.
4
Catching transcriptional regulation by thermostatistical modeling.
Phys Biol. 2012 Aug;9(4):045007. doi: 10.1088/1478-3975/9/4/045007. Epub 2012 Aug 7.
6
Thermodynamic state ensemble models of cis-regulation.
PLoS Comput Biol. 2012;8(3):e1002407. doi: 10.1371/journal.pcbi.1002407. Epub 2012 Mar 29.
7
Negative feedback confers mutational robustness in yeast transcription factor regulation.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3874-8. doi: 10.1073/pnas.1116360109. Epub 2012 Feb 21.
8
Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10202-7. doi: 10.1073/pnas.1100179108. Epub 2011 Jun 1.
9
Strong negative feedback from Erk to Raf confers robustness to MAPK signalling.
Mol Syst Biol. 2011 May 24;7:489. doi: 10.1038/msb.2011.27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验