Lehrstuhl für Grünlandlehre, Department of Plant Science, Technische Universität München, Freising, Germany.
Fachgebiet Tierernährung, Fakultät Land- und Ernährungswirtschaft, Hochschule Weihenstephan-Triesdorf, Freising, Germany.
PLoS One. 2013 Dec 31;8(12):e85235. doi: 10.1371/journal.pone.0085235. eCollection 2013.
Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces) under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ~12 h, and that of feces ~20 h. The half-life (t½) for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The (13)C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose), and a slower pool with a t½ of 21 h (likely including casein and milk fat). The diet-switch based turnover information provided a precise prediction (RMSE ~0.2 ‰) of the natural (13)C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition.
食物的同位素变化通过营养系统传播。但是,由于代谢和储存池的缓冲作用,这种变化在每个营养级都会减弱。因此,要了解营养系统中的同位素变化,就需要了解同位素周转率。在动物中,周转率通常在受控条件下的饮食转换实验中进行量化。此类实验通常涉及饮食化学成分的变化,这可能会影响周转率。此外,基于饮食转换的周转率模型是否适用于饮食输入信号随机波动的条件尚不确定。在这里,我们研究了从奶牛的饮食转换实验中得出的周转率信息是否可以预测在饮食同位素和化学成分自然波动下代谢产物(牛奶、牛奶成分和粪便)的同位素组成。首先,从 C3 草/玉米饮食转换为纯 C3 草饮食,用于量化全脂牛奶、乳糖、酪蛋白、乳脂和粪便中碳的周转率。使用包含多个池和个体内变异性的房室混合效应模型来分析数据,并包括在输出中首次出现示踪剂之前饲料摄入的延迟。牛奶成分和全脂牛奶的延迟约为 12 小时,粪便的延迟约为 20 小时。粪便中碳的半衰期(t½)为 9 小时,而乳糖、酪蛋白和乳脂的 t½分别为 10、18 和 19 小时。全脂牛奶的(13)C 动力学揭示了两个池,一个半衰期为 10 小时的快速池(可能代表乳糖),以及一个半衰期为 21 小时的较慢池(可能包括酪蛋白和乳脂)。基于饮食转换的周转率信息在奶牛摄入具有自然波动同位素组成的纯 C3 草的 30 天期间,为输出中的自然(13)C 波动提供了精确的预测(RMSE~0.2‰)。