Division of Pediatric Surgery, Department of Surgery, University of Wisconsin SMPH Madison, Wisconsin.
Division of Pediatric Surgery, Department of Surgery, University of Wisconsin SMPH Madison, Wisconsin.
J Surg Res. 2014 Mar;187(1):14-8. doi: 10.1016/j.jss.2013.11.1114. Epub 2013 Dec 7.
The mechanism of intestinal atresia formation remains undefined. Atresia in fibroblast growth factor receptor 2IIIb (Fgfr2IIIb(-/-)) mutant mouse embryos is preceded by endodermal apoptosis and involution of the surrounding mesoderm. We have observed that involution of the atretic segment is preceded by the downregulation of Sonic hedgehog (SHH) in the endoderm, which is a critical organizer of the intestinal mesoderm. We hypothesized that supplementation of Fgfr2IIIb(-/-) intestinal tracts with exogenous SHH protein before atresia formation would prevent involution of the mesoderm and rescue normal intestinal development.
In situ hybridization was performed on control and Fgfr2IIIb(-/-) intestinal tracts for Shh or forkhead box protein F1 (FoxF1) between embryonic (E) day 11.5 and E12.0. Control and Fgfr2IIIb(-/-) intestinal tracts were harvested at E10.5 and cultured in media supplemented with fibroblast growth factor (FGF) 10 + SHH, or FGF10 with a SHH-coated bead. In situ hybridization was performed at E12.5 for Foxf1.
SHH and Foxf1 expression were downregulated during intestinal atresia formation. Media containing exogenous FGF10 + SHH did not prevent colonic atresia formation (involution). A SHH protein point source bead did induce Foxf1 expression in controls and mutants.
Shh and Foxf1 expression are disrupted in atresia formation of distal colon, thereby serving as potential markers of atretic events. Application of exogenous SHH (in media supplement or as a point source bead) is sufficient to induce Foxf1 expression, but insufficient to rescue development of distal colonic mesoderm in Fgfr2IIIb(-/-) mutant embryos. Shh signal disruption is not the critical mechanism by which loss of Fgfr2IIIb function results in atresia formation.
肠闭锁形成的机制尚不清楚。成纤维细胞生长因子受体 2IIIb(Fgfr2IIIb(-/-))突变体胚胎中的闭锁先于内胚层细胞凋亡和周围中胚层的退化。我们观察到,闭锁段的退化先于内胚层中 Sonic hedgehog(SHH)的下调,SHH 是肠中胚层的关键组织者。我们假设在闭锁形成之前,用外源性 SHH 蛋白补充 Fgfr2IIIb(-/-) 肠,可以防止中胚层退化并挽救正常的肠道发育。
在胚胎 11.5 天到 12.0 天之间,对对照和 Fgfr2IIIb(-/-) 肠进行原位杂交,检测 Shh 或 forkhead box protein F1(FoxF1)。在 E10.5 时收获对照和 Fgfr2IIIb(-/-) 肠,并在含有成纤维细胞生长因子(FGF)10+SHH 的培养基中或涂有 SHH 的珠粒中培养。在 E12.5 时进行 Foxf1 的原位杂交。
在肠闭锁形成过程中,SHH 和 Foxf1 的表达下调。含有外源性 FGF10+SHH 的培养基不能防止结肠闭锁的形成(退化)。一个 SHH 蛋白点源珠粒确实诱导了对照和突变体中的 Foxf1 表达。
在远端结肠闭锁形成过程中,Shh 和 Foxf1 的表达被打乱,因此可以作为闭锁事件的潜在标志物。外源性 SHH(在培养基补充或作为点源珠粒)的应用足以诱导 Foxf1 的表达,但不足以挽救 Fgfr2IIIb(-/-) 突变体胚胎中远端结肠中胚层的发育。Shh 信号中断不是 Fgfr2IIIb 功能丧失导致闭锁形成的关键机制。