Suppr超能文献

LSU rRNA 的 GC 含量在所有生命的三个域的核糖体的拓扑和功能区域中发生演变。

The GC content of LSU rRNA evolves across topological and functional regions of the ribosome in all three domains of life.

机构信息

School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.

School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.

出版信息

Mol Phylogenet Evol. 2014 Mar;72:17-30. doi: 10.1016/j.ympev.2013.12.007. Epub 2014 Jan 4.

Abstract

Large-subunit rRNA is the ribozyme that catalyzes protein synthesis by translation, and many of its features vary along a deep-to-superficial gradient. By measuring the G+C proportions in this rRNA in all three domains of life (60 bacteria, 379 eukaryote, and 23 archaean sequences), we tested whether the proportion of GC nucleotides varies along this in-out gradient. The rRNA regions used were several zones identified by Bokov and Steinberg (2009) as being arranged from deep to superficial within the LSU. To the Bokov-Steinberg zones, we added the most superficial zone of all, the divergent domains (expansion segments), which are greatly enlarged in eukaryotes. Regression lines constructed from the hundreds of species of organisms revealed the expected in-out gradient, showing that species with high %GC (or high %AT) in their rRNA distribute more of these abundant nucleotides into the peripheral zones. This could be explained by the evolutionary rates of replacement of all nucleotides (A, C, G, T), because these latter rates are fastest at the periphery and slowest near the conserved core. As an overall explanation, we propose that when extrinsic factors (whole-genome nucleotide composition, or environmental temperature) demand the percentage of GC in the rRNA of a species be high or low, then the deep-lying zones are buffered against GC variation because they are the slowest to evolve. The deep, conserved zones are also the most involved in translation, hinting that stabilizing selection there prevents a high GC variability that would diminish LSU rRNA's core functions. We found only a few domain-specific trends in rRNA-GC distribution, which relate to many Archaea living at high temperatures or to the highly complex genes and adaptations of Eukaryota. Use of rRNA sequences in molecular phylogenetic studies, for reconstructing the relationships of organisms across the tree of life, requires accurate models of how rRNA evolves. The demonstration that GC distributes in regular patterns across rRNA regions can improve these tree-reconstruction models in the future and should yield phylogenies of greater accuracy.

摘要

大亚基 rRNA 是催化翻译过程中蛋白质合成的核酶,其许多特征沿深-浅梯度变化。通过测量生命三个领域(60 种细菌、379 种真核生物和 23 种古菌)中大亚基 rRNA 中的 G+C 比例,我们测试了 GC 核苷酸的比例是否沿这个内外梯度变化。使用的 rRNA 区域是 Bokov 和 Steinberg(2009 年)确定的几个区域,这些区域在 LSU 中从深到浅排列。对于 Bokov-Steinberg 区域,我们还添加了所有区域中最浅的区域,即发散域(扩展片段),在真核生物中这些区域大大扩大。从数百种生物的物种构建的回归线揭示了预期的内外梯度,表明 rRNA 中 GC%(或 AT%)高的物种将更多的这些丰富核苷酸分布到外围区域。这可以通过所有核苷酸(A、C、G、T)的替换进化率来解释,因为这些后者的速率在边缘最快,在保守核心附近最慢。作为一个总体解释,我们提出,当外在因素(整个基因组核苷酸组成或环境温度)要求物种的 rRNA 中的 GC%高或低时,那么深层区域就会缓冲 GC 变化,因为它们进化最慢。深而保守的区域也与翻译最相关,这表明那里的稳定选择防止了降低 LSU rRNA 核心功能的高 GC 可变性。我们只发现 rRNA-GC 分布中有少数特定于域的趋势,这些趋势与许多生活在高温下的古菌或真核生物的高度复杂基因和适应有关。在分子系统发育研究中使用 rRNA 序列,用于重建生命之树中生物体的关系,需要准确的 rRNA 进化模型。证明 GC 在 rRNA 区域中以规则模式分布可以改进未来这些树重建模型,并应产生更准确的系统发育。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验