Perera Ishanie Rangeeka, Gupta Akhil, Xiang Wanchun, Daeneke Torben, Bach Udo, Evans Richard A, Ohlin C André, Spiccia Leone
School of Chemistry, Monash University, Victoria 3800, Australia.
Phys Chem Chem Phys. 2014 Jun 28;16(24):12021-8. doi: 10.1039/c3cp54894e.
The abundance and low toxicity of manganese have led us to explore the application of manganese complexes as redox mediators for dye sensitized solar cells (DSCs), a promising solar energy conversion technology which mimics some of the key processes in photosynthesis during its operation. In this paper, we report the development of a DSC electrolyte based on the tris(acetylacetonato)manganese(iii)/(iv), Mn(acac)3, redox couple. PEDOT-coated FTO glass was used as a counter electrode instead of the conventionally used platinum. The influence of a number of device parameters on the DSC performance was studied, including the concentration of the reduced and oxidized mediator species, the concentration of specific additives (4-tert-butylpyridine, lithium tetrafluoroborate, and chenodeoxycholic acid) and the thickness of the TiO2 working electrode. These studies were carried out with a new donor-π-acceptor sensitizer K4. Maximum energy conversion efficiencies of 3.8% at simulated one Sun irradiation (AM 1.5 G; 1000 W m(-2)) with an open circuit voltage (VOC) of 765 mV, a short-circuit current (JSC) of 7.8 mA cm(-2) and a fill factor (FF) of 0.72 were obtained. Application of the commercially available MK2 and N719 sensitizers resulted in an energy conversion efficiency of 4.4% with a VOC of 733 mV and a JSC of 8.6 mA cm(-2) for MK2 and a VOC of 771 mV and a JSC of 7.9 mA cm(-2) for N719. Both dyes exhibit higher incident photon to current conversion efficiencies (IPCEs) than K4.
锰的储量丰富且毒性较低,这促使我们探索锰配合物作为染料敏化太阳能电池(DSC)氧化还原介质的应用。染料敏化太阳能电池是一种很有前景的太阳能转换技术,在其运行过程中模仿了光合作用的一些关键过程。在本文中,我们报道了基于三(乙酰丙酮)锰(Ⅲ)/(Ⅳ),即Mn(acac)₃氧化还原对的染料敏化太阳能电池电解质的研发情况。用涂有聚3,4-乙撑二氧噻吩(PEDOT)的氟掺杂氧化锡(FTO)玻璃作为对电极,取代了传统使用的铂。研究了许多器件参数对染料敏化太阳能电池性能的影响,包括还原态和氧化态介质物种的浓度、特定添加剂(4-叔丁基吡啶、四氟硼酸锂和鹅去氧胆酸)的浓度以及二氧化钛工作电极的厚度。这些研究是使用新型供体-π-受体敏化剂K4进行的。在模拟一个太阳光照(AM 1.5 G;1000 W m⁻²)下,开路电压(VOC)为765 mV,短路电流(JSC)为7.8 mA cm⁻²,填充因子(FF)为0.72时,获得了3.8%的最大能量转换效率。使用市售的MK2和N719敏化剂时,MK2的能量转换效率为4.4%,VOC为733 mV,JSC为8.6 mA cm⁻²;N719的VOC为771 mV,JSC为7.9 mA cm⁻²。这两种染料的入射光子到电流转换效率(IPCE)都高于K4。