Suppr超能文献

优先结合嗅觉受体中的一种气味:受体激活的前奏。

Preferential binding of an odor within olfactory receptors: a precursor to receptor activation.

机构信息

Department of Genetics, Division of Research, University of Alabama at Birmingham, 720 20th Street S., Birmingham, AL 35294, USA.

出版信息

Chem Senses. 2014 Feb;39(2):107-23. doi: 10.1093/chemse/bjt060. Epub 2014 Jan 7.

Abstract

Using computational methods, which allow mechanistic insights at a molecular level, we explored the olfactory receptor (OR)-odor interactions for 2 mouse ORs, S79 and S86. Both ORs have been previously experimentally, functionally characterized. The odors used were mostly carboxylic acids, which differed in chain length, substituents on the primary carbon atom-chain and degree of unsaturation. These odors elicited varied activation responses from both ORs. Our studies revealed that both receptors have 2 distinct binding sites. Preferential binding in 1 of the 2 sites is correlated with OR activation. The activating odorants: nonanedioic acid, heptanoic acid, and octanoic acid for OR S79 and nonanoic acid for OR S86 preferentially bind in the region bound by transmembranes (TMs [helical domains]) III, IV, V, and VI. The non excitatory odorants heptanol for S79 and heptanoic acid for S86 showed a greater likelihood of binding in the region bound by TMs I, II, III, and VII. Nanosecond-scale molecular dynamics simulations of the physiologically relevant conditions of docked OR-odorant complexes enabled us to quantitatively assess the roles of individual OR amino acids in odor binding. Amino acid-odorant contact maps and distance determinations over the course of the simulations lend support to our conclusions.

摘要

利用计算方法,我们可以在分子水平上深入了解嗅觉受体(OR)与气味的相互作用,从而探索了 2 种小鼠 OR,即 S79 和 S86。这两种 OR 都已被先前的实验功能特性所描述。所使用的气味主要是羧酸,其在链长、主碳原子上的取代基和不饱和程度上有所不同。这些气味引起了两种 OR 的不同激活反应。我们的研究表明,这两种受体都有 2 个不同的结合部位。其中一个结合部位的优先结合与 OR 的激活有关。激活性气味剂:壬二酸、庚酸和辛酸对 S79 的 OR 起作用,壬酸对 S86 的 OR 起作用,它们优先结合跨膜(TM [螺旋域])III、IV、V 和 VI 所绑定的区域。对于 S79 的非刺激性气味剂庚醇和对于 S86 的庚酸,它们更有可能结合由 TM I、II、III 和 VII 绑定的区域。在与生理相关的对接 OR-气味剂复合物的条件下进行纳秒级分子动力学模拟,使我们能够定量评估单个 OR 氨基酸在气味结合中的作用。在模拟过程中,氨基酸-气味剂接触图和距离的确定为我们的结论提供了支持。

相似文献

1
Preferential binding of an odor within olfactory receptors: a precursor to receptor activation.
Chem Senses. 2014 Feb;39(2):107-23. doi: 10.1093/chemse/bjt060. Epub 2014 Jan 7.
3
Studying Haloanisoles Interaction with Olfactory Receptors.
ACS Chem Neurosci. 2016 Jul 20;7(7):870-85. doi: 10.1021/acschemneuro.5b00335. Epub 2016 May 9.
4
Combinatorial receptor codes for odors.
Cell. 1999 Mar 5;96(5):713-23. doi: 10.1016/s0092-8674(00)80581-4.
7
8
The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant binding pocket.
Biochemistry. 2011 Feb 8;50(5):843-53. doi: 10.1021/bi1017396. Epub 2010 Dec 30.
10
Amino-acid changes acquired during evolution by olfactory receptor 912-93 modify the specificity of odorant recognition.
Hum Mol Genet. 2004 Apr 1;13(7):771-80. doi: 10.1093/hmg/ddh086. Epub 2004 Feb 12.

引用本文的文献

1
Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3.
Cell Mol Life Sci. 2020 Jun;77(11):2157-2179. doi: 10.1007/s00018-019-03279-y. Epub 2019 Aug 21.
2
Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations.
Front Mol Biosci. 2019 May 3;6:29. doi: 10.3389/fmolb.2019.00029. eCollection 2019.
3
Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research.
Curr Neuropharmacol. 2019;17(9):891-911. doi: 10.2174/1570159X17666181206095626.
4
Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis.
Front Mol Biosci. 2017 Sep 6;4:63. doi: 10.3389/fmolb.2017.00063. eCollection 2017.
5
Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1.
Cell Mol Life Sci. 2017 Nov;74(22):4209-4229. doi: 10.1007/s00018-017-2576-z. Epub 2017 Jun 27.
6
ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions.
Database (Oxford). 2016 Oct 2;2016. doi: 10.1093/database/baw132. Print 2016.
7
Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors.
J Am Chem Soc. 2015 Jul 8;137(26):8611-8616. doi: 10.1021/jacs.5b04659. Epub 2015 Jun 29.
8
The state of the art of odorant receptor deorphanization: a report from the orphanage.
J Gen Physiol. 2014 May;143(5):527-42. doi: 10.1085/jgp.201311151. Epub 2014 Apr 14.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Evaluation of olfactory dysfunction in neurodegenerative diseases.
J Neurol Sci. 2012 Dec 15;323(1-2):16-24. doi: 10.1016/j.jns.2012.08.028. Epub 2012 Sep 23.
4
Beyond modeling: all-atom olfactory receptor model simulations.
Front Genet. 2012 May 3;3:61. doi: 10.3389/fgene.2012.00061. eCollection 2012.
5
A broadly tuned mouse odorant receptor that detects nitrotoluenes.
J Neurochem. 2012 Jun;121(6):881-90. doi: 10.1111/j.1471-4159.2012.07740.x. Epub 2012 Apr 19.
6
Structure of the human κ-opioid receptor in complex with JDTic.
Nature. 2012 Mar 21;485(7398):327-32. doi: 10.1038/nature10939.
7
Computational Biology of Olfactory Receptors.
Curr Bioinform. 2009 Jan;4(1):8-15. doi: 10.2174/157489309787158143.
8
Hydrophobicity profiles in G protein-coupled receptor transmembrane helical domains.
J Receptor Ligand Channel Res. 2010;2010(3):123-133. doi: 10.2147/JRLCR.S14437.
9
Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment.
Structure. 2011 Aug 10;19(8):1108-26. doi: 10.1016/j.str.2011.05.012.
10
Crystal structure of the β2 adrenergic receptor-Gs protein complex.
Nature. 2011 Jul 19;477(7366):549-55. doi: 10.1038/nature10361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验