Department of Biology, McGill University, , Montreal, Quebec, Canada, Centre for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, , 09200 Moulis, France.
Proc Biol Sci. 2014 Jan 8;281(1777):20132094. doi: 10.1098/rspb.2013.2094. Print 2014 Feb 22.
The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient-autotrophs-herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory.
生态概念和理论中空间结构的加入促进了生态学内部各学科的融合,包括群落和生态系统生态学。然而,空间模型的复杂性限制了它们在理想化、规则景观中的应用。我们提出了一个具有有限和不规则空间结构的模型元生态系统,由通过物质和生物流动连接的局部养分自养生物-食草动物生态系统组成。我们研究了空间流动对稳定性和生态系统功能的影响,并提供了可预测这些影响的简单连通性度量。我们的结果表明,高养分和食草动物运动率会使局部生态系统动力学不稳定,导致元生态系统中出现空间异质平衡或振荡,通常会增加元生态系统的初级和次级生产力。然而,这些新兴动态的出现和空间尺度在很大程度上取决于元生态系统的空间结构和自养生物的相对运动率。我们展示了这种对有限空间结构的强烈依赖如何回避了常用的连通性度量,但可以通过描述空间结构和尺度的连通性矩阵的特征值和特征向量来预测。我们的研究表明,在元生态系统理论中需要考虑有限大小的生态系统。