Suppr超能文献

针对GPU和传统并行架构的区域遗传力推进复杂性状分析。

Regional heritability advanced complex trait analysis for GPU and traditional parallel architectures.

作者信息

Cebamanos L, Gray A, Stewart I, Tenesa A

机构信息

EPCC and The Roslin Institute, The University of Edinburgh, Edinburgh, UK.

出版信息

Bioinformatics. 2014 Apr 15;30(8):1177-1179. doi: 10.1093/bioinformatics/btt754. Epub 2014 Jan 7.

Abstract

MOTIVATION

Quantification of the contribution of genetic variation to phenotypic variation for complex traits becomes increasingly computationally demanding with increasing numbers of single-nucleotide polymorphisms and individuals. To meet the challenges in making feasible large-scale studies, we present the REgional heritability advanced complex trait analysis software. Adapted from advanced complex trait analysis (and, in turn, genome-wide complex trait analysis), it is tailored to exploit the parallelism present in modern traditional and graphics processing unit (GPU)-accelerated machines, from workstations to supercomputers.

RESULTS

We adapt the genetic relationship matrix estimation algorithm to remove limitations on memory, allowing the analysis of large datasets. We build on this to develop a version of the code able to efficiently exploit GPU-accelerated systems for both the genetic relationship matrix and REstricted maximum likelihood (REML) parts of the analysis, offering substantial speedup over the traditional central processing unit version. We develop the ability to analyze multiple small regions of the genome across multiple compute nodes in parallel, following the 'regional heritability' approach. We demonstrate the new software using 1024 GPUs in parallel on one of the world's fastest supercomputers.

AVAILABILITY

The code is freely available at http://www.epcc.ed.ac.uk/software-products CONTACT: a.gray@ed.ac.uk.

摘要

动机

随着单核苷酸多态性和个体数量的增加,对复杂性状的遗传变异对表型变异的贡献进行量化的计算需求越来越高。为了应对大规模研究可行性方面的挑战,我们推出了区域遗传力高级复杂性状分析软件。该软件改编自高级复杂性状分析(进而改编自全基因组复杂性状分析),旨在利用现代传统计算机和图形处理单元(GPU)加速计算机(从工作站到超级计算机)中存在的并行性。

结果

我们对遗传关系矩阵估计算法进行了调整,以消除内存限制,从而能够分析大型数据集。在此基础上,我们开发了一个代码版本,该版本能够在分析的遗传关系矩阵和限制最大似然(REML)部分有效地利用GPU加速系统,与传统的中央处理器版本相比,速度有了大幅提升。我们开发了按照“区域遗传力”方法在多个计算节点上并行分析基因组多个小区域的能力。我们在世界上最快的超级计算机之一上使用1024个GPU并行演示了该新软件。

可用性

该代码可从http://www.epcc.ed.ac.uk/software-products免费获取。联系方式:a.gray@ed.ac.uk。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验