Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.
J Am Chem Soc. 2014 Feb 5;136(5):2048-57. doi: 10.1021/ja412035q. Epub 2014 Jan 23.
Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.
光合生物,如植物、光合细菌和藻类,利用色素分子的微观复合物来吸收阳光。在光捕获复合物中,能量以分子激发的形式高效地传递,该复合物通常具有几个功能和结构亚基。绿硫细菌被认为是最高效的光捕获生物之一。尽管对这些细菌进行了多次实验和理论研究,但它们的光捕获复合物中高效和稳健的能量转移的物理起源仍未得到很好的理解。为了在系统水平上研究激发动力学,我们引入了一个原子模型,该模型模拟了绿硫细菌完整的光捕获装置。该模型包含大约 4000 个色素分子,包括一个用于类菌质体的双层卷、一个基板和六个 Fenna-Matthews-Olson 三聚体复合物。我们表明,功能亚基内的快速弛豫以及色素之间的集体激发态之间的转移可以导致能量有效地返回到初始激发条件和温度变化。此外,相同的机制描述了超快光学实验中经常观察到的多个激发动力学时间尺度的共存。虽然我们的发现支持超转移假说,但该模型揭示了通过不同长度尺度的多个通道进行的能量传输。