Suppr超能文献

涉及健康相关生活质量测量的映射算法得出的健康效用值中不确定性的低估:统计学解释及潜在补救措施

Underestimation of uncertainties in health utilities derived from mapping algorithms involving health-related quality-of-life measures: statistical explanations and potential remedies.

作者信息

Chan Kelvin K W, Willan Andrew R, Gupta Michael, Pullenayegum Eleanor

机构信息

Sunnybrook Health Sciences Centre, Division of Medical Oncology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (KKWC)

Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada (KKWC, ARW)

出版信息

Med Decis Making. 2014 Oct;34(7):863-72. doi: 10.1177/0272989X13517750. Epub 2014 Jan 9.

Abstract

OBJECTIVES

Mapping algorithms are being developed in increasing numbers to derive health utilities (HUs) from health-related quality-of-life (HRQOL) data. However, the variances of the mapping-derived HUs are observed to be smaller than those of the actual HUs.

METHODS

Two reasons are proposed: 1) the presence of important unmeasured predictors leading to a high degree of unexplained variance and 2) ignoring that the regression coefficients are random variables themselves. We derive 3 variance estimators of HUs to account for these causes: 1) R (2)-adjusted estimator, 2) parametric estimator, and 3) nonparametric estimator. We tested these estimators using a simulated dataset and a real dataset involving the EQ-5D-3L and University of Washington Quality of Life questionnaire for patients with head and neck cancers.

RESULTS

The R (2)-adjusted estimator can be used in ordinary least squares (OLS)-based mapping algorithms and requires only the R (2) from the derivation study. The parametric estimator can be used in OLS-based mapping algorithms and requires the mean square error (MSE) and design matrix from the derivation study. The nonparametric estimator can be used in any mapping algorithm and requires leave-one-out cross-validation MSE from the derivation study. In the simulated dataset, all 3 estimators are within 1% of the variance of the actual HUs. In the real dataset, the unadjusted variance was 45% less than the actual variance, while all 3 estimators are within 10% of the actual variance.

CONCLUSIONS

When conducting cost-utility analyses (CUA) based on mapping algorithms, the variances of derived HUs should be properly adjusted using one of the proposed methods so that the results of the CUAs will correctly characterize uncertainty.

摘要

目的

越来越多的映射算法正在被开发出来,用于从健康相关生活质量(HRQOL)数据中推导健康效用值(HUs)。然而,人们观察到映射推导的健康效用值的方差比实际健康效用值的方差小。

方法

提出了两个原因:1)存在重要的未测量预测因素,导致高度的无法解释的方差;2)忽略了回归系数本身就是随机变量。我们推导了3种健康效用值的方差估计量,以考虑这些原因:1)R(2)调整估计量;2)参数估计量;3)非参数估计量。我们使用模拟数据集和一个涉及EQ-5D-3L以及华盛顿大学头颈癌患者生活质量问卷的真实数据集对这些估计量进行了测试。

结果

R(2)调整估计量可用于基于普通最小二乘法(OLS)的映射算法,并且只需要推导研究中的R(2)。参数估计量可用于基于OLS的映射算法,并且需要推导研究中的均方误差(MSE)和设计矩阵。非参数估计量可用于任何映射算法,并且需要推导研究中的留一法交叉验证MSE。在模拟数据集中,所有3种估计量都在实际健康效用值方差的1%以内。在真实数据集中,未调整的方差比实际方差小45%,而所有3种估计量都在实际方差的10%以内。

结论

在基于映射算法进行成本效用分析(CUA)时,应使用所提出的方法之一对推导的健康效用值的方差进行适当调整,以便成本效用分析的结果能够正确地描述不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验